Page menu:

Akhmetov A. R., Boronnikova S. V., Yanbaev Y. A., Nechaeva Yu. A. On the Impact of Fagmentation of Broad-Leaved Forests on the Genetic Resources of Acer platanoides L. in the Republic of Bashkortostan

Norway maple, ISSR analysis of DNA, genetic diversity, populations


UDC 630*228+577.21

How to cite: Akhmetov A. R.1, Boronnikova S. V.2, Yanbaev Y. A.1, Nechaeva Yu. A.2 On the impact of fragmentation of broad-leaved forests on the genetic resources of Acer platanoides L. in the Republic of Bashkortostan // Sibirskij Lesnoj Zurnal (Sib. J. For. Sci.). 2021. N. 4. P. 64–72 (in Russian with English abstract and references).

DOI: 10.15372/SJFS20210406

© Akhmetov A. R., Boronnikova S. V., Yanbaev Y. A., Nechaeva Yu. A., 2021

Three-quarters of the Russian maple resources are concentrated in Bashkortostan. Norway maple Acer platanoides L. forms here in pure stands or dominates in the composition of broad-leaved forests on the western macroslope of mountains of the Southern Urals. But the species is represented in the Bashkir Cis-Urals as a part of this type of vegetation with relatively low participation, and the stands are geographically isolated. Using ISSR-analysis of DNA, we carried out a comparative analysis of the genetic variation of populations, which are fragmented to varying degrees during the centuries-old economic development of this region. The 5 primers used allowed us to detect polymorphism in 77 of 96 markers (80.2 %) in 6 examined stands. Significant differences in the level of genetic diversity of maple samples were revealed (the proportion of polymorphic loci varies in the range Р95 = 0.323–0.662, the expected heterozygosity HE = 0.052–0.148, the average number of alleles na = 1.197–1.385, the average effective number of alleles ne = 1.105–1.261), these parameters are significantly higher in forest areas with a relatively large proportion of the maple in the composition of stands. A comparatively large differentiation of populations was found in the frequencies of ISSR markers. The inter-sample component of genetic variation has a relatively high level of 60.1 % (GST = 0.601, the parameter varies from 0.523 to 0.676 for the primers), this is confirmed by the relatively high pairwise Nei’s genetic distances among populations (they vary from 0.129 to 0.347, on average D = 0.272). The clustering of samples and the use the method of principal components demonstrated that neighboring populations have relatively similar gene pools. It is concluded that the entomophilicity of the maple may be a cause of the patterns identified in the study, which limited the gene flow among geographically isolated stands and their groups. The ways of applying the obtained results in the practice of forestry are discussed. 



Алтухов Ю. П. Внутривидовое генетическое разнообразие: мониторинг и принципы сохранения // Генетика. 1995. Т. 31. С. 1333–1357 [Altukhov Yu. P. Vnutrividovoe geneticheskoe raznoobrazie: monitoring i principy sohraneniya (Intraspecific genetic diversity: monitoring and conservation principles) // Genetika (Genetics). 1995. V. 31. P. 1333–1357 (in Russian with English abstract)].

Букштынов А. Д. Клен. М.: Лесн. пром-сть, 1982. 86 с. [Bukshtynov A. D. Klen (Maple). Moscow: Lesn. prom-st (Timber Industry), 1982. 86 p. (in Russian)].

Горчаковский П. Л. Широколиственные леса и их место в растительном покрове Южного Урала. М.: Наука, 1972. 146 с. [Gorchakovskiy P. L. Shirokolistvennye lesa i ikh mesto v rastitelnom pokrove Yuzhnogo Urala (Broad-leaved forests and their place in the vegetation cover of the Southern Urals). Moscow: Nauka (Science), 1972. 146 p. (in Russian)].

Интерактивная карта «Леса России», 2021 [Interaktivnaya karta «Lesa Rossii» (Interactive map «Forests of Russia»), 2021 (in Russian)].

Лесной план Республики Башкортостан 2019–2028. Уфа: Мин-во лесн. хоз-ва Респ. Башкотостан, 2018. 122 с. [Lesnoy plan Respubliki Bashkortostan 2019–2028 (Forest plan of the Republic of Bashkortostan 2019–2028). Ufa: Min-vo lesn. khoz-va Resp. Bashkortostan (Ministry of Forestry Resp. Bashkortostan), 2018. 122 p. (in Russian)].

Лесосеменное районирование основных лесообразующих пород в СССР. М.: Лесн. пром-сть, 1982. 368 с. [Lesosemennoe rayonirovanie osnovnykh lesoobrazuyushchikh porod v SSSR (Forest-seed zoning of the main forest-forming species in the USSR). Moscow: Lesn. prom-st’ (Timber Industry), 1982. 368 p. (in Russian)].

Нейштадт М. И. История лесов и палеогеография СССР в голоцене. М.: Изд-во АН СССР. 1957. 403 с. [Neishtadt M. I. Istoriya lesov i paleogeografiya SSSR v golocene (History of forests and paleogeography of the USSR in the Holocene). Moscow: Izd-vo AN SSSR (USSR Acad. Sci. Publ.), 1957. 403 p. (in Russian)].

Попов Г. В. Леса Башкирии (их прошлое, настоящее и будущее). Уфа: Башк. кн. изд-во, 1980. 144 с. [Popov G. V. Lesa Bashkirii (ih proshloe, nastoyashchee i budushchee) (Forests of Bashkiria (their past, present and future)). Ufa: Bashk. kn. izd-vo (Bashkir book publ.), 1980. 144 p. (in Russian)].

Скляров Г. А. Лесостепные почвы Башкирской АССР, их генезис и производственная характеристика. М.: Наука, 1964. 246 с. [Sklyarov G. A. Lesostepnye pochvy Bashkirskoy ASSR, ih genezis i proizvodstvennaya kharakteristika (Forest-steppe soils of the Bashkir ASSR, their genesis and production characteristics). Moscow: Nauka (Science), 1964. 246 p. (in Russian)].

Тараканов В. В., Паленова М. М., Паркина О. В., Роговцев Р. В., Третьякова Р. А. Лесная селекция в России: достижения, проблемы, приоритеты (обзор) // Лесохоз. информ. 2021. № 1. С. 100–143 [Tarakanov V. V., Palenova M. M., Parkina O. V., Rogovtsev R. V., Tretyakova R. A. Lesnaya selektsiya v Rossii: dostizheniya, problemy, prioritety (obzor) (Forest tree breeding in Russia: achievements, challenges, priorities (ovevien)) // Lesohokz. inform. (Forestry Inform.). 2021. N. 1. P. 100–143 (in Russian with English abstract)].

Янбаев Ю. А., Боронникова С. В., Ахметов А. Р., Нечаева Ю. C., Пришнивская Я. В. Информативность ISSR-маркеров для выявления генетического разнообразия клена остролистного на Южном Урале // Вестн. Оренбург. гос. ун-та. 2014. № 6 (167). С. 94–97 [Yanbaev Yu. A., Boronnikova S. V., Akhmetov A. R., Nechaeva Yu. S., Prishnivskaya Ya. V. Informativnost' ISSR-markerov dlya vyyavleniya geneticheskogo raznoobraziya klena ostrolistnogo na Yuzhnom Urale (ISSR-markers as a tool for investigations of population genetic difersity: a case study of the Norway maple (Acer platanoides L.)) // Vestn. Orenburg. gos. un-ta (Bull. Orenburg. St. Univ.). 2014. N. 6 (167). P. 94–97 (in Russian with English abstract)].

Boyd M., Panoyan M. A., Michael P., Nkongolo K. K. Development and characterization of species-diagnostic ISSR and SCAR DNA markers for differentiating red maple (Acer rubrum) and silver maple (A. saccharinum) // Genome. 2019. V. 62. N. 8. P. 527–535.

Caudullo G., Rigo D. de. Acer platanoides in Europe: distribution, habitat, usage and threats // Europ. Atlas For. Tree Spec. / J. S.-M. Ayanz, D. de Rigo, G. Caudullo, T. H. Durrant, A. Mauri (Eds.). Publ. Office Europ. Union, 2016. P. 54–55.

Fahrig L. Effects of habitat fragmentation on biodiversity // Ann. Rev. Ecol. Evol. Syst. 2003. V. 34. N. 1. P. 487–515.

Kalubi K. N., Mehes-Smith M., Narendrula R., Michael P., Omri A. Molecular analysis of red maple (Acer rubrum) populations from a reclaimed mining region in Northern Ontario (Canada): soil metal accumulation and translocation in plants // Ecotoxicology. 2015. V. 24. Iss. 3. P. 636–647.

Kremer A., Hipp A. L. Oaks: an evolutionary success story // New Phytol. 2020. V. 226. Iss. 4. P. 987–1011.

Motahari B., Shabanian N., Rahmani M.-S., Mohammad-Hasani F. Genetic diversity and genetic structure of Acer monspessulanum L. across Zagros forests of Iran using molecular markers // Gene. 2021. V. 769. Article 145245.

Nei M. Genetic distance between populations // The Amer. Natur. 1972. V. 106. N. 949. P. 283–292.

Nei M. Molecular population genetics and evolution. North-Holland Research monographs. Frontiers of biology. V. 40. Amsterdam: Holland Press, 1975. 278 p.

Nei M. W., Li W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases // PNAS. 1979. V. 76. N. 10. P. 5269–5273.

Orlóci L. Multivariate analysis in vegetation research. The Hague, Boston: Dr. W. Junk B. V., Publ., 1978. 451 p.

Peakall R., Smouse P. E. GenAlEx 6: Genetic analysis in Excel. Population genetic software for teaching and research // Mol. Ecol. Not. 2006. V. 6. Iss. 1. P. 288–295.

POPGENE Version 1.31. Microsoft Windows-based freeware for population genetic analysis. Quick user guide / Yeh F. C., Boyle T., Yang R.-C., Ye Z., Mao J. X. Dept. Renewable Res., Univ. Alberta, Edmonton, AB Canada, 1999. 28 p.

Rogers S. O., Bendich A. J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues // Plant Mol. Biol. 1985. V. 5. Iss. 2. P. 69–76.

Zietkiewicz E., Rafalski J. A., Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification // Genomics. 1994. V. 20. Iss. 2. Р. 176–183.

Return to list