Page menu:

Tatarinova T. D., Perk A. A., Ponomarev A. G., Vasilieva I. V. Specifics of Stress Proteins-Dehydrins of Birch Betula L. in the Conditions of Cryolithozone

birch, organs, tissues, low temperatures, resistance, permafrost, Yakutia


UDC 574*24

How to cite: Tatarinova T. D., Perk A. A., Ponomarev A. G., Vasilieva I. V. Specifics of stress proteins-dehydrins of birch Betula L. in the conditions of cryolithozone // Sibirskij Lesnoj Zurnal (Sib. J. For. Sci.). 2020. N 2. P. 21–30 (in Russian with English abstract and references).

DOI: 10.15372/SJFS20200203

© Tatarinova T. D., Perk A. A., Ponomarev A. G., Vasilieva I. V., 2020

The compositional features of stressful dehydrin proteins of some species of Betula L.: silver birch B. pendula Roth, dwarf bog birch B. fruticosa Pall., dwarf birch B. nana L., growing under extreme climate conditions in the cryolithozone of Central Yakutia were studied using specific antibodies. The composition of birch dehydrins hanging from regions differing in more moderate climatic indices (South Yakutia and Pribaikalye) was studied for comparison. The composition of dehydrins in different species of birch under the conditions of cryolithozone has significant similarities. Low molecular weight dehydrins, mainly 17 kDa from two groups of identified dehydrins in the range with mol. m. 15-21 and 56-73 kDa, regardless of the species characteristics of birch, are subject to the greatest seasonal changes. These proteins in shoots and buds, as well as in the tissues of the bark and xylem of silver birch, have a high level during winter dormancy at the lowest negative temperatures, when frost resistance of plants reached maximum values, while they almost disappeared in the summer period. Dehydrins in the region of 15-21 kDa in birch shoots and buds were characterized by more pronounced intraspecific polymorphism in the conditions of Central Yakutia, their content, predominantly 17 kDa of dehydrin, significantly exceeded that of birches of the South Yakutia and Irkutsk populations. The middle molecular weight dehydrins of birch 66-69 kDa are presented round whole year at almost the same level. These dehydrins in leaves, male inflorescences, pollen and seedlings from silver birch seeds were observed during the growing season, although they were found in smaller quantities. Significant similarities in the composition and representation of dehydrins in the organs and tissues of the studied birch populations may indicate their important role in the general mechanisms of the formation of the low-temperature resistance of Betula L. plants to the conditions of Northeast Eurasia.



Аллагулова Ч. Р., Гималов Ф. Р., Шакирова Ф. М., Вахитов В. А. Дегидрины растений: их структура и предполагаемые функции // Биохимия. 2003. Т. 68. № 9. С. 1157–1165 [Allagulova Ch. R., Gimalov F. R., Shakirova F. M., Vakhitov V. A. Degidriny rasteniy: ikh struktura i predpolagayemye funktsii (The plant dehydrins: structure and putative functions) // Biokhimiya (Biochemistry). 2003. V. 68. N. 9. P. 1157–1165 (in Russian with English abstract)].

Бубякина В. В., Татаринова Т. Д., Пономарев А. Г., Перк А. А., Соломонов Н. Г. Особенности сезонной динамики дегидринов Betula platyphylla Sukacz., ассоциированные с формированием морозоустойчивости в условиях криолитозоны // ДАН. 2011. Т. 439. № 6. С. 844–847 [Bubyakina V. V., Tatarinova T. D., Ponomarev A. G., Perk A. A., Solomonov N. G. Osobennosti sezonnoy dinamiki degidrinov Betula platyphylla Sukacz., assotsiirovannye s formirovaniem morozoustoychivosti v usloviyakh kriolitozony (Characteristics of seasonal dynamics of Betula platyphylla Sukacz. dehydrins associated with frost hardiness development under the cryolitic zone conditions) // DAN (Rep. Acad. Sci.). 2011. V. 439. N. 6. Р. 844–847 (in Russian with English abstract)].

Всероссийский НИИ гидрометеорологической информации – Мировой центр данных, 2019.

Коропачинский И. Ю. Древесные растения Сибири // Новосибирск: Наука, 1983. 284 с [Koropachinskiy I. Yu. Drevesnye rasteniya Sibiri (Woody plants of Siberia) // Novosibirsk: Nauka, 1983. 284 р (in Russian)].

Погода и климат, 2019.

Пономарев А. Г., Татаринова Т. Д., Перк А. А., Васильева И. В., Бубякина В. В. Дегидрины, ассоциированные с формированием морозоустойчивости березы плосколистной // Физиол. раст. 2014. Т. 61. № 1. С. 114–120 [Ponomarev A. G., Tatarinova T. D., Perk A. A., Vasilyeva I. V., Bubyakina V. V. Degidriny, assotsiirovannye s formirovaniyem morozoustoychivosti berezy ploskolistnoy (Dehydrins associated with the development of frost resistance of Asian white birch) // Fiziologiya rasteniy (Phisiol. Plants). 2014. V. 61. N. 1. Р. 114–120 (in Russian with English abstract)].

Татаринова Т. Д., Бубякина В. В., Ветчинникова Л. В., Перк А. А., Пономарев А. Г., Васильева И. В. Стрессовые белки-дегидрины в почках березы в контрастных по климату регионах // Цитология. 2017. Т. 59. № 2. С. 156–160 [Tatarinova T. D., Bubyakina V. V., Vetchinnikova L. V., Perk A. A., Ponomarev A. G., Vasilieva I. V. Stressovye belki-degidriny v pochkakh berezy v kontrastnykh po klimatu regionakh (Dehydrin stress proteins in birch buds in regions with contrasting climate) // Tsitologiya (Cytology). 2017. V. 59. N. 2. Р. 156–160 (in Russian with English abstract)].

Тимофеев П. А. Деревья и кустарники Якутии. Якутск: Бичик, 2003. 59 с [Timofeyev P. A. Derevya i kustarniki Yakutii (Trees and shrubs of Yakutia). Yakutsk: Bichik, 2003. 59 р. (in Russian)].

Allagulova Ch. R., Gimalov F. R., Shakirova F. M., Vakhitov V. A. The plant dehydrins: structure and putative functions // Biochemistry. 2003. V. 68. Iss. 9. P. 945–951 (Original Rus. text © Ch. R. Allagulova, F. R. Gimalov, F. M. Shakirova, V. A. Vakhitov, 2003, publ. in Biokhimiya. 2003. V. 68. N. 9. P. 1157–1165).

Bradford M. M. A Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal. Biochem. 1976. V. 72. Р. 248–254.

Bubyakina V. V., Tatarinova T. D., Ponomarev A. G., Perk A. A., Solomonov N. G. Characteristics of seasonal dynamics of Betula platyphylla Sukacz. dehydrins associated with frost hardiness development under the cryolitic zone conditions // Dokl. Biol. Sci. 2011. V. 439. Iss. 1. Article 258 (Original Rus. text © V. V. Bubyakina, T. D. Tatarinova, A. G. Ponomarev, A. A. Perk, N. G. Solomonov, 2011, publ. in Doklady Akademii Nauk. 2011. V. 439. N. 6. P. 844–847).

Chang C. Y., Frechette E., Unda F., Mansfield S. D., Ensminger I. Elevated temperature and CO2 stimulate late-season photosynthesis but impair cold hardening in pine // Plant Physiol. 2016. V. 172. P. 802–818.

Close T. J. Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins // Physiol. Plant. 1996. V. 97. Iss. 4. P. 795–803.

Cuevas-Velazquez C. L., Rendоn-Luna D. F., Covarrubias A. A. Dissecting the cryoprotection mechanisms for dehydrins // Front. Plant Sci. 2014. V. 5. P. 1–6.

Eriksson S. K., Kutzer M., Procek J., Gröbner G., Harryson P. Tunable membrane binding of the intrinsically disordered dehydrin Lti30, a cold-induced plant stress protein // The Plant Cell. 2011. V. 23. P. 2391–2404.

Fujikawa S., Ukaji N., Nagao M. Yamane K., Takezawa D., Arakawa K. Functional role of winter-accumulating proteins from mulberry tree in adaptation to winter-induced stresses. Cold Hardiness in Plants: Mol. Gen., Cell Biol. and Physiol., 2006. P. 181–202.

Hanin M., Brini F., Ebel C., Toda Y., Takeda S. Masmoudi K. Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms // Plant Signal. Behav. 2011. V. 6 (10). P. 1503–1509.

Hara M., Terashima S., Kuboi T. Characterization and cryoprotective activity of cold-responsive dehydrin from Citrus unshiu // J. Plant Physiol. 2001. V. 158. P. 1333–1339.

Karlson D. T., Zeng Y., Stirm V. E., Joly R. J., Ashworth E. N. Photoperiodic regulation of a 24-kD dehydrin-like protein in red-osier dogwood (Cornus sericea L.) in relation to freeze-tolerance // Plant. Cell. Physiol. 2003. V. 44. P. 25–34.

Kjellsen T. D., Yakovlev I. A., Fossdal C. G., Strimbeck G. R. Dehydrin accumulation and extreme low-temperature tolerance in Siberian spruce (Picea obovata) // Tree Physiol. 2013. V. 33. Iss. 12. P. 1354–1366.

Korotaeva N. E., Oskorbina M. V., Kopytova L. D., Suvorova G. G., Borovskii G. B., Voinikov V. K. Variations in the content of stress proteins in the needles of common pine (Pinus sylvestris L.) within an annual cycle // J. For. Res. 2012. V. 17. N. 1. P. 89–97.

Kosova K., Prasil I. T., Vitamvas P. Role of dehydrins in plant stress response. Handbook of Plant and Crop Stress. Tucson: CRC, 2010. P. 239–285.

Laemmli U. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 // Nature. 1970. V. 227. P. 680–685.

Malik A. A., Veltri M. A., Boddington K. F., Singh K., Graether S. P. Genome analysis of conserved dehydrin motifs in vascular plants // Front. Plant Sci. 2017. V. 8. P. 1–18.

Peng Y., Reyes J. L., Wei H., Yang Y., Karlson D., Covarrubias A .A., Krebs S. L., Fessehaie A., Arora R. RcDhn5, a cold acclimation-responsive dehydrin from Rhododendron catawbiense rescues enzyme activity from dehydration effects in vitro and enhances freezing tolerance in RcDhn5-overexpressing Arabidopsis plants // Physiol. Plant. 2008. V. 134. P. 583–597.

Ponomarev A. G., Tatarinova T. D., Perk A. A., Vasilyeva I. V., Bubyakina V. V. Dehydrins associated with the development of frost resistance of Asian white birch // Rus. J Plant Physiol. 2014. V. 61. Iss. 1. P. 105–111 (Original Rus. text © A. G. Ponomarev, T. D. Tatarinova, A. A. Perk, I. V. Vasilieva, V. V. Bubyakina, 2014, publ. in Fiziologiya Rastenii. 2014. V. 61. N. 1. P. 114–120.

Puhakainen T., Hess M. W., Mäkelä P., Svensson J., Heino P., Palva E. T. Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis // Plant Mol. Biol. 2004. V. 54. Iss. 5. P. 743–753.

Rinne P., Welling A., Kaikuranta P. Onset of freezing tolerance in birch (Betula pubescens Ehrh.) involves LEA proteins and osmoregulation and is impaired in an ABA-deficient genotype // Plant Cell Environ. 1998. V. 21. P. 601–611.

Rorat T. Plant dehydrins-tissue location, structure and function // Cell. Mol. Biol. Lett. 2006. V. 11. Iss. 4. P. 536–556.

Sarnighausen E., Karlson D., Ashworth E. Seasonal regulation of a 24-kDa protein from red-osier dogwood (Cornus sericea) xylem // Tree Physiol. 2002. V. 22. P. 423–430.

Sena J. S., Giguère I., Rigault P., Bousquet J., Mackay J. J. Expansion of the dehydrin gene family in the Pinaceae is associated with considerable structural diversity and drought-responsive expression // Tree Physiol. 2018. V. 38. Iss. 3. P. 442–456.

Strimbeck G. R., Schaberg P. G., Fossdal C. G., Schroder W. P., Kjellsen T. D. Extreme low temperature tolerance in woody plants // Front. Plant Sci. 2015. V. 6. P. 1–15.

Svensson J., Ismail A. M., Palva E. T., Close T. J. Dehydrins // Cell and molecular responses to stress. Book Ser. Amsterdam, Netherlands: Elsevier Press, 2002. V. 3. P. 155–171.

Takata N., Kasuga J., Takezawa D., Arakawa K., Fujikawa S. Gene expression associated with increased supercooling capability in xylem parenchyma cells of larch (Larix kaempferi) // J. Exp. Bot. 2007. V. 58. №. 13. P. 3731–3742.

Tatarinova T. D., Bubyakina V. V., Vetchinnikova L. V., Perk A. A., Ponomarev A. G., Vasilieva I. V. Dehydrin stress proteins in birch buds in regions with contrasting climate // Cell Tiss. Biol. 2017. V. 11. Iss. 6. P. 483–488 (Original Rus. text © T. D. Tatarinova, V. V. Bubyakina, L. V. Vetchinnikova, A. A. Perk, A. G. Ponomarev, I. V. Vasilieva, 2017, publ. in Tsitologiya. 2017. V. 59. N. 2. P. 156–160).

Timmons T. M., Dunbar B. S. Protein blotting and immunodetection // Methods enzymol. 1990. V. 182. P. 679–688.

Weather Underground, 2019.

Welling A., Palva E. T. Molecular control of cold acclimation in trees // Physiol. Plant. 2006. V. 127. Iss. 2. P. 167–181.

Welling A., Palva E. T. Involvement of CBF transcription factors in winter hardiness in birch // Plant Physiol. 2008. V. 147. P. 1199–1211.

Welling A., Rinne P., Vihera-Aarnio A., Kontunen-Soppela S., Heino P., Palva E. T. Photoperiod and temperature differentially regulate the expression of two dehydrin genes during overwintering of birch (Betula pubescens Ehrh.) // J. Exp. Bot. 2004. V. 55. P. 507–516.

Return to list