Page menu:

Kovalev A. V. Analysis of Forest Stands Resistance to Siberian Silk Moth Attack, According to Remote Sensing Data

forest insects, assessment of the forest state, population outbreaks, ground-based remote sensing methods


UDC 630*57:630*453:528.855

How to cite: Kovalev A. V. Analysis of forest stands resistance to Siberian silk moth attack, according to remote sensing data // Sibirskij Lesnoj Zurnal (Sib. J. For. Sci.). 2021. N. 5. P. 71–78 (in Russian with English abstract and references).

DOI: 10.15372/SJFS20210508

© Kovalev A. V., 2021

To assess the state of plantations in vast areas of boreal forests, modern methods are needed that allow obtaining information quickly with minimal labor costs. The existing assessment methods are either associated with labor-consuming ground-based observations, or they make it possible to measure the damage that has already occurred using remote sensing data (satellite, aeronautical observation methods). Methods for analyzing the state of forest stands in large areas (such as taiga forests in Siberia) based on remote sensing data are proposed. As an indicator of the state of stands, it is proposed to use the susceptibility index of vegetation index during the season (NDVI) to changes in the radiation temperature (LST), obtained from satellite data of the Terra/Aqua system. The index was calculated as the transfer spectral response function in the integral equation between NDVI and LST. The analysis was made for two types fir stands of Krasnoyarsk Region taiga zone – territories that since 2015 were damaged by of the Siberian silkworm Dendrolimis sibiricus Tschetv. caterpillars and nearest intact areas. It is shown that indicators of stands’ susceptibility to environmental changes on the studied test plots changed significantly 2–3 years before pest population outbreaks and can be taken into account when assessing the risk of outbreaks. This distinguishes proposed indicator from assessments of the vegetation cover state, which register a significant defoliation of forest stands and cannot be used for forecasting.



Ким Д. П. Теория автоматического управления: учеб. пособ. Т. 1. Линейные системы. М.: Физматлит, 2007. 312 с. [Kim D. P. Teoriya avtomaticheskogo upravleniya: ucheb. posob. T. 1. Lineynye sistemy (Automatic control theory: Tutorial. V. 1. Linear systems). Moscow: Fizmatlit, 2007. 312 p. (in Russian)].

Краснов М. Л., Киселев А. И., Макаренко Г. И. Интегральные уравнения. Задачи и примеры с подробными решениями: учеб. пособ. Изд. 3-е, испр. М.: Едиториал УРСС, 2003. 192 с. [Krasnov M. L., Kisilev A. I., Makarenko G. I. Integral’nye uravneniya. Zadachi i primery s podrobnymi resheniyami: ucheb. posob. Izd. 3-e, ispr. (Integral equations. Tasks and examples with detailed solutions: tutorial. 3rd ed., revised). Moscow: Editorial URSS, 2003. 192 p. (in Russian)].

Макс Ж. Методы и техника обработки сигналов при физических измерениях. М.: Мир, 1983. Т. 1. 312 с. [Maks Zh. Metody i tekhnika obrabotki signalov pri fizicheskikh izmereniyakh (Signal processing methods and techniques for physical measurements). Moscow: Mir, 1983. V. 1. 312 p. (in Russian)].

Мармарелис П., Мармарелис В. Анализ физиологических систем. Метод белого шума. М.: Мир, 1981. 480 с. [Marmarelis P., Marmarelis V. Analiz fiziologicheskikh sistem. Metod belogo shuma (Analysis of physiological systems. White noise method). Moscow: Mir, 1981. 480 p. (in Russian)].

Морс Ф. М., Фешбах Г. Методы теоретической физики. М.: Ин. лит-ра, 1960. Т. 2. 942 с. [Mors F. M., Feshbakh G. Metody teoreticheskoy fiziki (Methods of theoretical physics). Moscow: In. lit-ra, 1960. V. 2. 942 p. (in Russian)].

AρρEEARS – Application for Extracting and Exploring Analysis Ready Samples. USGS, 2021.

Bayarjargal Y., Karnieli A., Bayasgalan M., Khudulmur S., Gandush C., Tucker C. J. A comparative study of NOAA-AVHRR derived drought indices using change vector analysis // Int. J. Rem. Sens. 2006. V. 105. Iss. 1. P. 9–22.

Cunha M., Richter C. A time-frequency analysis on the impact of climate variability with focus on semi-natural montane grassland meadows // IEEE Trans. Geosci. Rem. Sens. 2014. V. 52. Iss. 10. P. 6156–6164.

Jacquin A., Sheeren D., Lacombe J.-P. Vegetation cover degradation assessment in Madagascar savanna based on trend analysis of MODIS NDVI time series // Int. J. Appl. Earth Observ. Geoinform. 2010. V. 12. Suppl. 1. P. 3–10.

Kovalev A. V., Ivanova Yu. D., Sukhovolskiy A. A., Volkov V. E., Sukhovolskiy V. G. Mathematical models for determining the boundaries of forest areas unstable to the appearance of insects using satellite data (MODIS) // IOP Conf. Ser.: Mater. Sci. Engineer. II Int. Sci. Conf. «Adv. Technol. in Aerospace, Mech. Automat. Engineer.». MIST: Aerospace – 2019, 18–21 Nov., 2019, Krasnoyarsk, Russia. 2020. V. 734. Article 012091. P. 1–6.

Lewis M. A., Nelson W., Xu C. A structured threshold model for mountain pine beetle outbreak // Bull. Math. Biol. 2010. V. 72. Iss. 3. P. 565–589.

Liang L., Chen Y., Hawbaker T. J., Zhu Z.-L., Gong P. Mapping mountain pine beetle mortality through growth trend analysis of time-series Landsat data // Rem. Sens. 2014. V. 6. Iss. 6. P. 5696–5716.

Liu Y., Hill M. J., Zhang X., Wang Z., Richardson A. D., Hufkens K., Filippa G., Baldocchi D. D., Ma S., Verfaillie J., Schaaf C. B. Using data from Landsat, MODIS, VIIRS and PhenoCams to monitor the phenology of California oak/grass savanna and open grassland across spatial scales // Agr. For. Meteorol. 2017. V. 237–238. P. 311–325.

MODIS – Moderate-Resolution Imaging Spectroradiometer. NASA, 2021. http://modis.gsfc.nasa. gov.

Nelson W. A., Bjørnstad O. N., Yamanaka T. Recurrent insect outbreaks caused by temperature-driven changes in system stability // Science. 2013. V. 341. Iss. 6147. P. 796–799.

Olsson P.-O., Lindström J., Eklundh L. Near real-time monitoring of insect induced defoliation in subalpine birch forests with MODIS derived NDVI // Rem. Sens. Environ. 2016. V. 181. P. 42–53.

Rechid D., Raddatz T. J., Jacob D. Parameterization of snow-free land surface albedo as a function of vegetation phenology based on MODIS data and applied in climate modelling // Theor. Appl. Climatol. 2009. V. 95. Iss. 3–4. P. 245–255.

Senf C., Seidl R., Hostert P. Remote sensing of forest insect disturbances: Current state and future directions // Int. J. Appl. Earth Observ. Geoinform. 2017. V. 60. P. 49–60.

Spruce J. P., Sader S., Ryan R. E., Smoot J., Kuper P., Ross K., Prados D., Russell J., Gasser G., McKellip R. Assessment of MODIS NDVI time series data products for detecting forest defoliation by gypsy moth outbreaks // Rem. Sens. Environ. 2011. V. 115. P. 427–437.

Thayn J. B. Using a remotely sensed optimized Disturbance Index to detect insect defoliation in the Apostle Islands, Wisconsin, USA // Rem. Sens. Environ. 2013. V. 136. P. 210–217.

Tucker C. J., Sellers P. J. Satellite remote sensing of primary production // Int. J. Rem. Sens. 1986. V. 7. Iss. 11. P. 1395–1416.

Verbesselt J., Zeileis A., Herold M. Near real-time disturbance detection using satellite image time series // Rem. Sens. Environ. 2012. V. 123. P. 98–108.

Return to list