Page menu:

Loskutov S. R., Petrunina E. A., Aniskina A. A. The Hygroscopic Properties of the Siberian Conifer Bark: Thermal Analysis and Sorption

bark, Siberian conifers, bound water, sorption isotherm analysis, thermogravimetry, differential scanning calorimetry


UDC 630.812.14/812.211

How to cite: Loskutov S. R., Petrunina E. A., Aniskina A. A. The hygroscopic properties of the Siberian conifer bark: thermal analysis and sorption // Sibirskij Lesnoj Zurnal (Sib. J. For. Sci.). 2021. N. 2. P. 64–71 (in Russian with English abstract and references).

DOI: 10.15372/SJFS20210206

© Loskutov S. R., Petrunina E. A., Aniskina A. A., 2021

This article deals with the hygroscopic properties of the bark of coniferous species in Siberia. Isotherms of moisture sorption in the bark of the Siberian larch Larix sibirica Ledeb., Scotch pine Pinus sylvestris L. and the Siberian fir Abies sibirica Ledeb. when the relative vapor pressure changes from 0.1 to 0.8 at a temperature of 20.0 ± 1.5 °C practically coincided. Therefore, to analyze the sorption properties of the system (bark)-(water vapor) within the framework of the Brunauer-Emmet-Teller (BET), Guggenheim-Andersen de Boer (GAB), Frenkel-Holsey-Hill (FHH), Zimm-Lundberg (ZL), Flory-Huggins (FH), and the theory of volume filling of micropores (MVF) used for «generalized isotherm» that approximates experimental data. The isotherms of moisture sorption by bark were used to quantify the most important hygroscopic characteristics. We used BET and GAB to calculate monolayer capacity (um), specific inner surface area (Ssp) and ZL equation to find water vapor content and relative pressure when water clusters start to form in the bark samples; FHH, FH model and MVF theory to obtain fractal dimension of «sorption surface», sorbent-sorbate interaction parameter and characteristic sorption energy (Ес), respectively. Based on the precision methods of thermal analysis – thermogravimetry (TG), differential thermogravimetry (DTG) and differential scanning calorimetry (DSC), a fractional picture of thermal desorption of bound water and energy spent on its removal when heating samples at a constant rate. The values of um, Ssp indicate differences between these values obtained as a result BET models and the average value of the characteristic sorption energy Eс (MVF) indicates the absence or very small internal mechanical stresses in the cortex. From the analysis of the rate of nonisothermal drying according to the fourth derivative of the DTG circuit with respect to temperature, differences in the temperature ranges and thethermal desorption intensity of bound moisture by samples of bark of the Siberian larch, Scotch pine, and the Siberian fir were established; the heat of thermal desorption of bound water was 38.1, 38.0 and 45.6 kJ/mol Н2О accordingly.



Адамсон А. Физическая химия поверхностей. М.: Мир, 1979. 568 с. [Adamson A. Fizicheskaya khimiya poverkhnostey (Physical chemistry of surfaces). Moscow: Mir, 1979. 568 p. (in Russian)].

ГОСТ 28268-89. Почвы. Методы определения влажности, максимальной гигроскопической влажности и влажности устойчивого завядания растений. М.: Стандартинформ, 2006. 8 с. [GOST 28268-89. Pochvy. Metody opredeleniya vlazhnosti, maksimal’noy gigroskopicheskoy vlazhnosti i vlazhnosti ustoychivogo zavyadaniya rasteniy (Soils. Methods for determination of moisture content, maximum hygroscopic moisture content and moisture content of sustainable plant wilting.). Moscow: Standartinform, 2006. 8 p. (in Russian)].

Грег С., Синг К. Адсорбция, удельная поверхность, пористость. М.: Мир, 1984. 310 с. [Greg S., Sing K. Adsorbtsiya, udel’naya poverkhnost’, poristost’ (Adsorption, specific surface area, porosity). Moscow: Mir, 1984. 310 p. (in Russian)].

Колосовская Е. А., Лоскутов С. Р., Чудинов Б. С. Физические основы взаимодействия древесины с водой. Новосибирск: Наука. Сиб. отд-ние, 1989. 216 с. [Kolosovskaya E. A., Loskutov S. R., Chudinov B. S. Fizicheskie osnovy vzaimodeystviya drevesiny s vodoy (Physical bases of wood interaction with water). Novosibirsk: Nauka. Sib. Br., 1989. 216 p. (in Russian)].

Лоскутов С. Р. Взаимодействие древесины с физически активными низкомолекулярными веществами. Новосибирск: Изд-во СО РАН, 2004. 171 с. [Loskutov S. R. Vzaimodeystvie drevesiny s fizicheski aktivnymi nizkomolekulyarnymi veshchestvami (Interaction of wood with physically active low molecular weight substances). Novosibirsk: Izd-vo SO RAN (Sib. Br. Rus. Acad. Sci. Publ.), 2004. 171 p. (in Russian)].

Лоскутов С. Р. Анискина А. А., Шапченкова О. А., Тютькова Е. А. Cвязанная вода в древесине лесообразующих пород Сибири: термический анализ и сорбция // Сиб. лесн. журн. 2019. № 3. С. 26–32 [Loskutov S. R. Aniskina A. A., Shapchenkova O. A., Tyutkova E. A. Svyazannaya voda v drevesine lesoobrazuyushchikh porod Sibiri: termicheskiy analiz i sorbtsiya (Bound water in wood of the main tree species of Siberia: thermal analysis and sorption) // Sib. lesn. zhurn. (Sib. J. For. Sci.). 2019. N. 3. P. 26–32 (in Russian with English abstract)].

Лоскутов С. Р., Шапченкова О. А., Ведрова Э. Ф., Анискина А. А., Мухортова Л. В. Гигроскопические свойства подстилки хвойных и лиственных насаждений Средней Сибири // Сиб. экол. журн. 2013. № 5. С. 695–702 [Loskutov S. R., Shapchenkova O. A., Vedrova E. F., Aniskina A. A., Mukhortova L. V. Gigroskopicheskie svoystva podstilki khvoynykh i listvennykh nasazhdeniy Sredney Sibiri (Hygroscopic properties of the litter of coniferous and deciduous stands in Central Siberia) // Sib. ekol. zhurn. (Sib. Ecol. J.). 2013. N. 5. P. 695–702 (in Russian with English abstract)].

Оболенская А. В., Ельницкая З. П., Леонович А. А. Лабораторные работы по химии древесины и целлюлозы. М.: Экология, 1991. 320 с. [Obolenskaya A. V., Elnitskaya Z. P., Leonovich A. A. Laboratornye raboty po khimii drevesiny i tsellyulozy (Laboratory work on the wood chemistry and cellulose). Moscow: Ekologiya, 1991. 320 p. (in Russian)].

Эзау К. Анатомия семенных растений. М.: Мир, 1980. 400 с. [Ezau K. Anatomiya semennykh rasteniy (Anatomy of seed plants). Moscow: Mir, 1980. 400 p. (in Russian)].

Berg C. van den, Bruin S. Water activity and its estimation in food systems: theoretical aspects In: Water activity: Influences on food quality / L. B. Rockland, G. F. Stewart (Eds.). New York: Acad. Press. 1981. P. 2-61.

Broido A. A simple, sensitive graphical method of treating thermogravimetric analysis data // J. Polym. Sci. Part A-2: Polym. Phys. 1969. V. 7. Iss. 10. P. 1761–1773.

Davis E. M., Elabd Y. A. Water clustering in glassy polymers // J. Phys. Chem. B. 2013. V. 117. N. 36. P. 10629–10640.

Goudjinou C., Ahouannou C., Chaffa G., Soumanou M. M. Optimization of the drying of Moringa oleifera leaves by determination of thermophysical parameters // Int. J. Biol. Chem. Sci. 2017. V. 11. N. 4. P. 1627–1645.

Ilek A., Kucza J., Morkisz K. Hygroscopicity of the bark of selected forest tree species // iForest. 2016. V. 10. Iss. 1. P. 220–226.

Jiang W., Adamopoulos S., Hosseinpourpia R., Žigon J., Petrič M., Šernek M., Medved S. Utilization of partially liquefied bark for production of particleboards // Appl. Sci. 2020. V. 10. Iss. 15. Article number: 5253. 14 p.

Loskutov S. R. Analysis of the wood sorption isotherm using the theory of micropore volume filling // Holzforschung. 2000. V. 54. N. 3. Р. 301–304.

Loskutov S. R., Shapchenkova O. A., Vedrova E. F., Aniskina A. A., Mukhortova L. V. Hygroscopic properties of the litter of coniferous and deciduous stands in Central Siberia // Contemp. Probl. Ecol. 2013. V. 6. N. 5. P. 525–531 (Original Rus. Text © S. R. Loskutov, O. A. Shapchenkova, E. F. Vedrova, A. A. Aniskina, L. V. Mukhortova, 2013, publ. in Sibirskii Ekologicheskii Zhurnal. 2013. N. 5. P. 695–702).

Pásztory Z., Mohácsiné I. R., Gorbacheva G., Börcsök Z. The utilization of tree bark // BioRes. 2016. V. 11. N. 3. P. 7859–7888.

Pérez-Alonso C., Fabela-Morón M. F., Guadarrama-Lezama A. Y., Barrera-Pichardo J. F., Alamilla-Beltrán L., Rodríguez-Huezo M. E. Interrelationship between the structural features and rehydration properties of spray dried manzano chilli sauce microcapsules // Rev. Mex. Ing. Quím. 2009. V. 8. N. 2. P. 187–196.

Rawat S. P. R., Khali D. P. Clustering of water molecules during adsorption of water in wood // J. Polym. Sci. Part B. Polym. Phys. 1998. V. 36. Iss. 4. P. 665–671.

Tsalagkas D., Börcsök Z., Pásztory Z. Thermal, physical and mechanical properties of surface overlaid bark-based insulation panels // Europ. J. Wood and Wood Products. 2019. V. 77. Iss. 5. P. 721–730.

Return to list