Page menu:

Loskutov S. R., Tyutkova E. A., Plyashechnik M. A., Petrunina E. A., Shapchenkova O. A., Aniskina A. A. Early Instrumental Diagnostics of Fungal Infections in Wood

Scotch pine Pinus sylvestris L. wood, early stage of fungal infestation, FTIR spectroscopy, scanning electron microscopy


UDC 630*81:632.4

How to cite: Loskutov S. R., Tyutkova E. A., Plyashechnik M. A., Petrunina E. A., Shapchenkova O. A., Aniskina A. A. Early instrumental diagnostics of fungal infections in wood // Sibirskij Lesnoj Zurnal (Sib. J. F. Sci.). 2021. N. 6. P. 39–45 (in Russian with English abstract and references).

DOI: 10.15372/SJFS20210604

© Loskutov S. R., Tyutkova E. A., Plyashechnik M. A., Petrunina E. A., Shapchenkova O. A., Aniskina A. A., 2021

The changes in the physico-chemical parameters of Scotch pine Pinus sylvestris L. wood were studied at an early stage of a fungal infection development in it using the methods of IR-Fourier spectroscopy and scanning electron microscopy (SEM). Analysis of SEM-images of locally damaged wood showed the presence of hyphae both in the intercellular space and in the lumens of single tracheids. From the comparison of the results of analyses of damaged and healthy wood, a number of parameters of the IR spectra were established – a change in the ratio of the absorption intensity at characteristic frequencies (wave numbers, cm-1) for polymers of wood substance (hemicellulose, cellulose, lignin) and fungi (chitin and glucans) I1512/898, I1512/1157, I1512/894, I1647/1551, I1695/1533, I1620/1564, which allows identifying the presence and degree of exposure to fungal infection on wood. A new version of the assessment of changes in the structure of the wood substance is presented, which consists in a comparative analysis of the second derivatives of the IR absorption spectra of sound and damaged wood. The method significantly improves not only the visualization of changes in the spectra, but also allows to more accurately determine the impact of a fungal infection on the wood substance by the intensity and frequency of the absorption bands. In addition, it can be used to monitor the appearance of nitrogen-containing compounds because of the presence of fungi. The implemented methodological techniques indicate the possibility of using radial cores in the work for the purpose of conducting their conjugate analysis, «linking» the results of IR-Fourier spectroscopy to the parameters of the annual rings and, in general, to chronologies, as well as correlating them with the morphological and anatomical structure of the annual ring and individual tracheids according to scanning electron microscopy data. The proposed approach for the diagnosis of wood damage at an early stage of the development of a fungal infection is effective, rapid and does not require complex sample preparation.



ГОСТ 8.229-81, Группа Т88.4*. Государственная система обеспечения единства измерений. Спектрофотометры инфракрасные. Методы и средства поверки. М.: Изд-во стандартов, 1983. 22 с. [GOST 8.229-81, Group T88.4 *. Gosudarstvennaya sistema obespecheniya edinstva izmereniy. Spektrofotometry infrakrasnye. Metody i sredstva poverki. (State system for ensuring the uniformity of measurements.

Infrared spectrophotometers. Methods and means of verification). Moscow: Izd-vo standartov, 1983. 22 p. (in Russian)].

Тарасевич Б. Н. ИК спектры основных классов органических соединений. Справочные мат-лы. Москва: МГУ, 2012. 55 с. [Tarasevich B. N. IK spektry osnovnykh klassov organicheskikh soedineniy. Spravochnye materialy (IR spectra of the major classes of organic compounds. Reference materials). Moscow: MGU (Moscow St. Univ.), 2012. 55 р. (in Russian)].

Bekiaris G., Tagkouli D., Koutrotsios G., Kalogeropoulos N., Zervakis D. I. Pleurotus mushrooms content in glucans and ergosterol assessed by ATR-FTIR spectroscopy and multivariate analysis // Foods. 2020. V. 9. Iss. 4. Article number: 535. P. 1–16.

Gallio E., Zanatta P., Ribes D. D., Lazarotto M., Gatto D. A., Beltrame R. Fourier transform infrared spectroscopy in treated woods deteriorated by a white rot fungus // Maderas. Cien. Tecnol. 2018. V. 20. N. 3. P. 479–488.

Genestar C., Pons C. Analytical characterization of biodegraded wood from a 15th century Spanish cloister // Microchim. Acta. 2008. V. 162. Iss. 3–4. Article number: 333. P. 333–339.

Kalnin N. N., Baikalov I. A., Venyaminov S. Yu. Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. III. Estimation of the protein secondary structure // Biopolymers. 1990. V. 30. Iss. 13–14. P. 1273–1280.

Karami L., Schmidt O., Fromm J., Klinberg A., Schmitt U. Wood decay characterization of a naturally-infected oak wood bridge using Py-GC/MS // Wood Res. 2013. V. 58. N. 4. P 591–598.

Karim M., Daryaei M. G., Torkaman J., Oladi R., Ghanbary M. A. T., Bari E., Yilgor N. Natural decomposition of hornbeam wood decayed by the white rot fungus Trametes versicolor // Anais Acad. Bras. Cienc. 2017. V. 89. N. 4. P. 2647–2655.

Kumirska J., Czerwicka M., Kaczyński Z., Bychowska A., Brzozowski K., Thöming J., Stepnowski P. Application of spectroscopic methods for structural analysis of chitin and chitosan // Mar. Drugs. 2010. V. 8. N. 5. P 1567–1636.

Nelson M. L., O’Connor R. T. Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part I. Spectra of lattice types I, II, III and of amorphous cellulose // J. Appl. Polym. Sci. 1964. V. 8. Iss. 3. P. 1311–1324.

Pandey K. K. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy // J. Appl. Polym. Sci. 1999. V. 71. Iss. 12. P. 1969–1975.

Popescu C.-M., Popescu M.-C., Singurel G., Vasile C., Argyropoulos D. S., Willfor S. Spectral characterization of eucalyptus wood // Appl. Spectrosc. 2007. V. 61. Iss. 11. P. 1168–1177.

Popescu C.-M., Popescu M.-C., Vasile C. Structural changes in biodegraded lime wood // Carbohydrate Polymers. 2010. V. 79. Iss. 2. P. 362–372.

Popescu C.-M., Tibirna C. M., Manoliu A., Gradinariu P., Vasile C. Microscopic study of lime wood decayed by Chaetomium globosum // Cellulose Chem. Technol. 2011. V. 45. Iss. 9–10. P. 565–569.

Reh U., Kraepelin G., Lamprecht I. Use of differential scanning calorimetry for structural analysis of fungally degraded wood // Appl. Environ. Microbiol. 1986. V. 52. N. 5. P. 1101–1106.

Rodrigues J., Faix O., Pereira H. Determination of lignin content of Eucalyptus globulus wood using FTIR spectroscopy // Holzforschung. 1998. V. 52. N. 1. P. 46–50.

Šandula J., Kogan G., Kačuráková M., Machová E. Microbial (1-3)-b-D-glucans, their preparation, physico-chemical characterization and immunomodulatory activity // Carbohydrate Polymers. 1999. V. 38. Iss. 3. P. 247–253.

Sunardi S., Istikowati W. T., Ishiguri F., Yokota S. FTIR spectroscopy and color change of wood for assessment and monitoring of softwood degradation by white-rot fungus Porodaedalea pini // AIP Conf. Proc. 2018. V. 2026. Article number: 020024. P. 1–8.

Vane C. H. The molecular composition of lignin in spruce decayed by white-rot fungi (Phanerochaete chrysosporium and Trametes versicolor) using pyrolysis-GC-MS and thermochemolysis with tetramethylammonium hydroxide // Int. Biodeterior. Biodegrad. 2003. V. 51. Iss. 1. P. 67–75.

Venyaminov S. Yu., Kalnin N. N. Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. I. Spectral parameters of amino acid residue absorption bands // Biopolymers. 1990а. V. 30. Iss. 13–14. P. 1243–1257.

Venyaminov S. Yu., Kalnin N. N. Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. II. Amide absorption bands of polypeptides and fibrous proteins in a-, b-, and random coil conformations // Biopolymers. 1990b. V. 30. Iss. 13–14. P. 1259–1271. 

Return to list