RU EN

Page menu:

Usoltsev V. А., Tsepordey I. S. Climatically Caused Territorial Changes in the Phytomass of Forest-Forming Tree Species of Eurasia and Their Forecasting

Authors:
Keywords:
Pinus L., Picea L., Abies Mill., Larix Mill., Betula L., Populus L., tree biomass, database, regression analysis, the principle of space-for-time substitution, average January temperature, average annual precipitation
Pages:
72–90

Abstract

UDC 630*52:630*174.754+582.475

How to cite: Usoltsev V. А.1, 2, Tsepordey I. S.1 Climatically caused territorial changes in the phytomass of forest-forming tree species of Eurasia and their forecasting // Sibirskij Lesnoj Zurnal (Sib. J. For. Sci.). 2021. N. 6. P. 72–90 (in Russian with English abstract and references).

DOI: 10.15372/SJFS20210607

© Usoltsev V. А., Tsepordey I. S., 2021

Forest ecosystems play an essential role in climate stabilization, and the study of their capabilities in this aspect is of paramount importance. On the other hand, the current climatic shifts cause changes in their biological productivity, which, in turn, affects the biosphere function of forests. The study of the relationship between the biomass of trees and stands and hydrothermal indicators, in particular temperature and precipitation, is carried out mainly at the local or regional levels, often for indicators that are depersonalized by age, morphostructure of the forest, and also without taking into account the species composition. How climate changes affect the biomass of trees in transcontinental gradients is unknown today. The objective of this study was (a) to verify the operation of the law of the limiting factor at the transcontinental level when modeling changes in the biomass of trees of forest-forming species of Eurasia in relation to geographically determined indicators of temperatures and precipitation, and (b) to test the possibility of using the constructed climate-conditioned models of tree biomass in predicting temporal changes in tree biomass based on the principle of space-for-time substitution. As a result of the implementation of the principles of the limiting factor and space-for-time substitution, a common pattern has been established for the main tree species (genera): in sufficiently moisture-rich climatic zones, an increase in temperature by 1 °C with a constant amount of precipitation causes an increase in aboveground biomass, and in non-deficient zones – its decrease; in warm climatic zones, a decrease in precipitation by 100 mm at a constant average temperature in January causes a decrease in aboveground biomass, and in cold climatic zones - its increase. 

Article


СПИСОК ЛИТЕРАТУРЫ (REFERENCES)

Алисов Б. П., Полтараус Б. В. Климатология. М.: МГУ, 1974. 300 с. [Alisov B. P., Poltaraus B. V. Klimatologiya (Climatology). Moscow: MGU (Moscow St. Univ. Publ.), 1974. 300 p. (in Russian)].

Анучин Н. П. Лесная таксация. М.; Л.: Гослесбумиздат, 1952. 532 с. [Anuchin N. P. Lesnaya Taksatsiya (Forest Mensuration). Moscow-Leningrad: Goslesbumizdat, 1952. 532 p. (in Russian)].

Борисов А. А. Климаты СССР. М.: Просвещение, 1967. 296 с. [Borisov A. A. Klimaty SSSR (Climates of the USSR). Moscow: Prosveshchenie, 1967. 296 p. (in Russian)].

Глебов Ф. З., Литвиненко В. И. Динамика ширины годичных колец в связи с метеорологическими показателями в различных типах болотных лесов // Лесоведение. 1976. № 4. С. 56–62 [Glebov F. Z., Litvinenko V. I. Dinamika shiriny godichnykh kolets v svyazi s meteorologicheskimi pokazatelyami v razlichnykh tipakh bolotnykh lesov (The dynamics of tree ring width in relation to meteorological indices in different types of wetland forests) // Lesovedenie (For. Sci.). 1976. N. 4. P. 56–62 (in Russian with English abstract)].

Григорьев А. А., Будыко М. И. О периодическом законе географической зональности // Докл. АН СССР. 1956. Т. 110. № 1. С. 129–132 [Grigor’ev A. A., Budyko M. I. O periodicheskom zakone geograficheskoy zonal’nosti (On the periodic law of geographical zoning) // Dokl. AN SSSR (Proc. USSR Acad. Sci.). 1956. V. 110. N. 1. P. 129–132 (in Russian with English abstract)].

Докучаев В.В. Учение о зонах природы. М.: Географгиз, 1948. 63 с. [Dokuchaev V. V. Uchenie o zonakh prirody (The doctrine of the zones of nature). Moscow: Geografgiz, 1948. 63 p. (in Russian)].

Комаров В. Л. Меридиональная зональность организмов // Дневник I Всерос. съезда русских ботаников в Петрограде. Вып. 3. Петроград, 1921. С. 27–28 [Komarov V. L. Meridional’naya zonal’nost’ organizmov (Meridional zonality of organisms) // Dnevnik I Vseros. s’ezda russkikh botanikov v Petrograde (Diary of the 1st All-Rus. Congress of Rus. botanists in Petrograd). Iss. 3. Petrograd, 1921. P. 27–28 (in Russian)].

Корзухин М. Д., Семевский Ф. Н. Синэкология леса. СПб.: Гидрометеоиздат, 1992. 192 с. [Korzukhin M. D., Semevskiy F. N. Sinekologiya Lesa (Synecology of the forest). St. Petersburg: Gidrometeoizdat, 1992. 192 p. (in Russian)].

Лит Х. Моделирование первичной продуктивности земного шара // Экология. 1974. № 2. С. 13–23 [Lieth Kh. Modelirovanie pervichnoy produktivnosti zemnogo shara (Modeling the primary productivity of the Globe) // Ekologiya (Ecology). 1974. N. 2. P. 13–23 (in Russian with English abstract)].

Мак-Лоун Р. Р. Математическое моделирование – искусство применения математики // Математическое моделирование. М.: Мир, 1979. С. 9–20 [McLone R. R. Matematicheskoe modelirovanie – iskusstvo primeneniya matematiki (Mathematical modeling – the art of applying mathematics) // Matematicheskoe modelirovanie (Mathematical modeling). Moscow: Mir, 1979. P. 9–20 (in Russian)].

Молчанов A. A. Продуктивность органической массы в лесах различных зон. М.: Наука, 1971. 275 с. [Molchanov A. A. Produktivnost’ organicheskoy massy v lesakh razlichnykh zon (Productivity of organic mass in forests of different zones). Moscow: Nauka (Science), 1971. 275 p. (in Russian)].

Молчанов А. А. Дендроклиматические основы прогнозов погоды. M.: Наука, 1976. 168 с. [Molchanov A. A. Dendroklimaticheskie osnovy prognozov pogody (Dendroclimatic bases of weather forecasts). Moscow: Nauka (Science), 1976. 168 p. (in Russian)].

Одум Ю. Основы экологии. M.: Мир, 1975. 740 с. [Odum E. Osnovy ekologii (Bases of ecology). Moscow: Mir, 1975. 740 р. (in Russian)].

Оленин С. М. Динамика радиального прироста древостоев сосновых фитоценозов среднетаежной подзоны Предуралья: дис… канд. биол. наук: 03.00.16. Свердловск, 1982. 18 с. [Olenin S. M. Dinamika radial’nogo prirosta drevostoev sosnovykh fitotsenozov srednetaezhnoy podzony Preduraliya: dis. ... kand. biol. nauk (Dynamics of radial growth of stands of pine phytocenoses in the middle taiga subzone of the Pre-Urals: Cand. biol. sci. (PhD) thesis. Sverdlovsk, 1982. 18 p. (in Russian)].

Риклефс Р. Е. Основы общей экологии. М.: Мир, 1979. 424 с. [Ricklefs R. E. Osnovy obshchey ekologii (Bases of general ecology). Moscow: Mir, 1979. 424 p. (in Russian)].

Розенберг Г. С., Ф. Н. Рянский, Н. В. Лазарева, С. В. Саксонов, Ю. В. Симонов, Г. Р. Хасаев. Общая и прикладная экология. Самара-Тольятти: Изд-во Самарского гос. экон. ун-та, 2016. 452 с. [Rosenberg G. S., Ryansky F. N., Lazareva N. V., Saksonov S. V., Simonov Yu. V., Khasaev G. R. Obshchaya i prikladnaya ekologiya (General and applied ecology). Samara-Togliatti: Samara St. Econ. Univ. Publ., 2016. 452 p. (in Russian)].

Рухович Д. И., Панкова Е. И., Калинина Н. В., Черноусенко Г. И. Количественный расчет параметров выделения зон и фаций ареалов распространения каштановых почв России на основе климато-почвенно-гранулометрического показателя // Почвоведение. 2019. №. 3. С. 304–316 [Rukhovich D. I., Pankova E. I., Kalinina N. V., Chernousenko G. I. Kolichestvenny raschet parametrov vydeleniya zon i faciy arealov rasprostraneniya kashtanovykh pochv Rossii na osnove klimato-pochvenno-granulometricheskogo pokazatelya (Quantification of the parameters of zones and facies of chestnut soils in Russia on the basis of the climatic-soil-textural index) // Pochvovedenie (Soil. Sci.). 2019. N. 3. P. 304–316 (in Russian with English abstract)].

Смолоногов Е. П. Лесообразовательный процесс и генетическая классификация типов леса // Леса Урала и хозяйство в них. 1995. Вып. 18. С. 43–58 [Smolonogov E. P. Lesoobrazovatelny protsess i geneticheskaya klassifikatsiya tipov lesa (Forest formation process and genetic classification of forest types) // Lesa Urala i khozyaystvo v nikh (Forests of the Urals and their management). 1995. Iss. 18. P. 43–58 (in Russian with English abstract)].

Усольцев В. А. Вес кроны березы и осины в насаждениях Северного Казахстана // Вестн. с.-х. науки Казахстана. 1972. № 4. С. 77–80 [Usoltsev V A. Ves krony berezy i osiny v nasazhdeniykh Severnogo Kazakhstana (Birch and aspen crown biomass in forests of Northern Kazakhstan // Vestn. s.-kh. nauki Kazakhstana (Bull. Agr. Sci. Kazakhstan). 1972. N. 4. P. 77–80 (in Russian)].

Усольцев В. А. Рост и структура фитомассы древостоев. Новосибирск: Наука. Сиб. отд-ние, 1988. 253 с. [Usoltsev V A. Rost i struktura fitomassy drevostoev (Growth and structure of forest stand biomass). Novosibirsk: Nauka (Science). Sib. Br., 1988. 253 p. (in Russian)].

Усольцев В. А. Фитомасса модельных деревьев лесообразующих пород Евразии: база данных, климатически обусловленная география, таксационные нормативы. Екатеринбург: Урал. гос. лесотех. ун-т, 2016. 336 с. [Usoltsev V. A. Fitomassa model’nykh derev’ev lesoobrazuyushchikh porod Evrasii: Baza dannykh, klimaticheski obuslovlennaya geografiya, taksatsionnye normativy (Single-tree biomass of forest-forming species in Eurasia: Database, climatе-related geography, weight tables). Yekaterinburg: Ural St. For. Engineer. Univ., 2016. 336 p. (in Russian)].

Усольцев В. А., Колчин К. В., Воронов М. П. Фиктивные переменные и смещения всеобщих аллометрических моделей при локальной оценке фитомассы деревьев (на примере Picea L.) // Эко-потенциал. 2017б. № 1 (17). С. 22–39 [Usoltsev V. A., Kolchin K. V., Voronov M. P. Fiktivnye peremennye i smeshcheniya vseobshchikh allometricheskikh modeley pri lokal’noy otsenke fitomassy derev’ev (na primere Picea L.) (Dummy variables and biases of general allometric models in the local assessment of the phytomass of trees (on the example of Picea L.) // Eko-Potentsial. 2017b. N. 1 (17). P. 22–39 (in Russian with English abstract)].

Усольцев В. А., Колчин К. В., Маленко А. А. Смещения всеобщих аллометрических моделей при локальной оценке фитомассы деревьев лиственницы // Вестн. Алтай. гос. агр. ун-та. 2017а. № 4 (150). С. 85–90 [Usoltsev V. A., Kolchin K. V., Malenko A. A. Smeshcheniya vseobshchikh allometricheskikh modeley pri lokalnoy otsenke fitomassy derev’ev listvennitsy (Biases of general allometric models in the local assessment of the phytomass of larch trees) // Vestn. Altai. gos. agr. un-ta (Bul. Altai St. Agr. Univ.). 2017a. N. 4 (150). P. 85–90 (in Russian with English abstract)].

Усольцев В. А., Колчин К. В., Норицина Ю. В., Азарёнок М. В., Богословская О. А. Смещения всеобщих видоспецифичных аллометрических моделей при локальной оценке фитомассы деревьев сосны, кедра и пихты // Эко-потенциал. 2017в. № 2 (18). С. 47–58 [Usoltsev V. A., Kolchin K. V., Noritsina Yu. V., Azarenok M. V., Bogoslovskaya O. A. Smeshcheniya vseobshchikh allometricheskikh modeley pri lokal’noy otsenke fitomassy dereviev sosny, kedra i pikhty (Biases of general species-specific allometric models in the local assessment of the phytomass of pine, cedar and fir trees) // Eko-Potentsial. 2017b. N. 2 (18). P. 47–58 (in Russian with English abstract)].

Усольцев В. А., Цепордей И. С. Климатические градиенты биомассы насаждений Quercus spp. на территории Евразии // Сиб. лесн. журн. 2020. № 6. С. 16–29 [Usoltsev V. А., Tsepordey I. S. Klimaticheskie gradienty biomassy nasazhdeniy Quercus spp. na territorii Evrazii (Climate gradients of Quercus spp. forest biomass in Eurasia) // Sib. lesn. zhurn. (Sib. J. For. Sci.). 2020. N. 6. P. 16–29 (in Russian with English abstract and references)].

Усольцев В. А., Цепордей И. С. Прогнозирование биомассы стволов сосновых деревьев естественных древостоев и лесных культур в связи с изменением климата // Сиб. лесн. журн. 2021. № 2. С. 72–81 [Usoltsev V. А., Tsepordey I. S. Prognozirovanie biomassy stvolov sosnovykh dereviev estestvennykh drevostoev i lesnykh kul’tur v svyazi s izmeneniem klimata (Predicting stem biomass of pine trees in natural and planted forests due to climate change) // Sib. lesn. zhurn. (Sib. J. For. Sci.). 2021. N. 2. P. 72–81 (in Russian with English abstract and references)].

Уткин А. И. Две объемные книги о фитомассе лесов Северной Евразии // Лесоведение. 2004. № 1. С. 68–70 [Utkin A. I. Dve ob’emnye knigi o fitomasse lesov Severnoy Evrazii (Two voluminous books about the phytomass of the forests of Northern Eurasia) // Lesovedenie (For. Sci.). 2004. N. 1. P. 68–70. (in Russian with English abstract)].

Фонти М. В. Климатический сигнал в параметрах годичных колец (плотности древесины, анатомической структуре и изотопном составе) хвойных и лиственных видов деревьев в различных природно-климатических зонах Евразии: дис. … докт. биол. наук: 03.02.08. Красноярск: СФУ, 2020. 45 с. [Fonti M. V. Klimaticheskiy signal v parametrakh godichnykh kolets (plotnosti drevesiny, anatomicheskoy structure i izotopnom sostave) khvoynykh i listvennykh vidov derev’ev v razlichnykh prirodno-klimaticheskikh zonakh Evrazii (Climatic signal in the parameters of annual rings (wood density, anatomical structure and isotopic composition) of coniferous and deciduous tree species in various natural and climatic zones of Eurasia): DSc Biol. thesis: Ecology. Krasnoyarsk: Sib. Fed. Univ., 2020. 45 p. (in Russian)].

Alcamo J., Moreno J. M., Nováky B., Bindi M., Corobov R., Devoy R. J., Giannakopoulos C., Martin E., Olesen J. E., Shvidenko A. Z. Europe. Climate change 2007: impacts, adaptation and vulnerability // Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change / M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, C. E. Hanson (Eds.). Cambridge: Cambridge Univ. Press, 2007. P. 541–580.

Ali A., Lin S. L., He J. K., Kong F. M., Yu J. H., Jiang H. S. Climate and soils determine aboveground biomass indirectly via species diversity and stand structural complexity in tropical forests // For. Ecol. Manag. 2019. V. 432. P. 823–831.

Ali A., Sanaei A., Li M. S., Nalivan O. A., Ahmadaali K., Pour M. J., Valipour A., Karami J., Aminpour M., Kaboli H., Askari Y. Impacts of climatic and edaphic factors on the diversity, structure and biomass of species-poor and structurally-complex forests // Sci. Total Environ. 2020. V. 706. Article number: 135719.

Anderson-Teixeira K. J., Allen A. P., Gillooly J., Brown J. Temperature-dependence of biomass accumulation rates during secondary succession // Ecol. Let. 2006. V. 9. Iss. 6. P. 673–682.

Aubin I., Boisvert-Marsh L., Kebli H., McKenney D., Pedlar J., Lawrence K., Hogg E. H., Boulanger Y., Gauthier S., Ste-Marie C. Tree vulnerability to climate change: Improving exposure-based assessments using traits as indicators of sensitivity // Ecosphere. 2018. V. 9. Article number: e02108.

Baskerville G. L. Use of logarithmic regression in the estimation of plant biomass // Can. J. For. Res. 1972. V. 2. Iss. 1. P. 49–53.

Belote R. T., Carroll C., Martinuzzi S., Michalak J., Williams J. W., Williamson M. A., Aplet G. H. Assessing agreement among alternative climate change projections to inform conservation recommendations in the contiguous United States // Sci. Rep. 2018. V. 8. P. 1–13.

Bergstrom D. M., Wienecke B. C., den Hoff J. van, Hughes L., Lindenmayer D. B., Ainsworth T. D., Baker C. M., Bland L., Bowman D. M. J. S., Brooks S. T., Canadell J. G., Constable A. J., Dafforn K. A., Depledge M. H., Dickson C. R., Duke N. C., Helmstedt K. J., Holz A., Johnson C. R., McGeoch M. A., Melbourne-Thomas J., Morgain R., Nicholson E., Prober S. M., Raymond B., Ritchie E. G., Robinson S. A., Ruthrof K. X., Setterfield S. A., Sgrò C. M., Stark J. S., Travers T., Trebilco R., Ward D. F. L., Wardle G. M., Williams K. J., Zylstra P. J., Shaw J. D. Combating ecosystem collapse from the tropics to the Antarctic // Glob. Change Biol. 2021. V. 27. P. 1–12.

Berner L. T., Beck P. S. A., Bunn A. G., Goetz S. J. Plant response to climate change along the forest-tundra ecotone in northeastern Siberia // Glob. Change Biol. 2013. V. 19. N. 11. P. 3449–3462.

Bjorkman A. D., Myers-Smith I. H., Elmendorf S. C., Normand S., Rüger N., Beck P. S. A., Blach-Overgaard A., Blok D., Cornelissen J. H. C., Forbes B. C., Georges D., Goetz S. J., Guay K. C., Henry G. H. R., RisLambers J. H., Hollister R. D., Karger D. N., Kattge J., Manning P., Prevéy J. S., Rixen C., Schaepman-Strub G., Thomas H. J. D., Vellend M., Wilmking M., Wipf S., Carbognani M., Hermanutz L., Lévesque E., Molau U., Petraglia A., Soudzilovskaia N. A., Spasojevic M. J., Tomaselli M., Vowles T., Alatalo J. M., Alexander H. D., Anadon-Rosell A., Angers-Blondin S., te Beest M., Berner L., Björk R. G., Buchwal A., Buras A., Christie K., Cooper E. J., Dullinger S., Elberling B., Eskelinen A., Frei E. R., Grau O., Grogan P., Hallinger M., Harper K. A., Heijmans M. M. P. D., Hudson J., Hülber K., Iturrate-Garcia M., Iversen C. M., Jaroszynska F., Johnstone J. F., Jørgensen R. H., Kaarlejärvi E., Klady R., Kuleza S., Kulonen A., Lamarque L. J., Lantz T., Little C. J., Speed J. D. M., Michelsen A., Milbau A., Nabe-Nielsen J., Nielsen S. S., Ninot J. M., Oberbauer S. F., Olofsson J., Onipchenko V. G., Rumpf S. B., Semenchuk P., Shetti R., Collier L. S., Street L. E., Suding K. N., Tape K. D., Trant A., Treier U. A., Tremblay J.-P., Tremblay M., Venn S., Weijers S., Zamin T., Boulanger-Lapointe N., Gould W. A., Hik D. S., Hofgaard A., Jónsdóttir I. S., Jorgenson J., Klein J., Magnusson B., Tweedie C., Wookey P. A., Bahn M., Blonder B., van Bodegom P. M., Bond-Lamberty B., Campetella G., Cerabolini B. E. L., Chapin III F. S., Cornwell W. K., Craine J., Dainese M., de Vries F. T., Díaz S., Enquist B. J., Green W., Milla R., Niinemets Ü., Onoda Y., Ordoñez J. C., Ozinga W. A., Penuelas J., Poorter H., Poschlod P., Reich P. B., Sandel B., Schamp B., Sheremetev S., Weiher E. Plant functional trait change across a warming tundra biome // Nature. 2018. V. 562. P. 57–80.

Blois J. L. Williams J. W., Fitzpatrick M. C., Jackson S. T., Ferrier S. Space can substitute for time in predicting climate-change effects on biodiversity // PNAS. 2013. V. 110. Iss. 23. P. 9374–9379.

Callaway R. M., Delucia E. H., Schlesinger W. H. Biomass allocation of montane and desert ponderosa pine: an analog for response to climate change // Ecology. 1994. V. 75. N. 5. P. 1474–1481.

Costa A., Salvidio S., Penner J., Basile M. Time‑for‑space substitution in N‑mixture models for estimating population trends: a simulation‑based evaluation // Sci. Rep. 2021. V. 11. Article number: 4581.

Currie D. J. Projected effects of climate change on patterns of vertebrate and tree species richness in the conterminous United States // Ecosystems. 2001. V. 4. N. 3. P. 216–225.

DeLeo V. L., Menge D. N., Hanks E. M., Juenger T. E., Lasky J. R. Effects of two centuries of global environmental variation on phenology and physiology of Arabidopsis thaliana // Glob. Change Biol. 2020. V. 26. N. 2. P. 523–538.

DeLucia E. H., Maherali H., Carey E. V. Climate-driven changes in biomass allocation in pines // Glob. Change Biol. 2000. V. 6. P. 587–593.

Denney D. A., Anderson J. T. Natural history collections document biological responses to climate change: A commentary on DeLeo et al., 2020, Effects of two centuries of global environmental variation on phenology and physiology of Arabidopsis thaliana // Glob. Change Biol. 2020. V. 26. P. 340–342.

Elith J., Leathwick J. R. Species distribution models: Ecological explanation and prediction across space and time // Annu. Rev. Ecol. Evol. Systemat. 2009. V. 40. N. 1. P. 677–697.

Feller M. C. Generalized versus site-specific biomass regression equations for Pseudotsuga menziessi var. menziesii and Thuja plicata in Coastal British Columbia // Biores. Technol. 1992. V. 39. P. 9–16.

Ferrier S., Guisan A. Spatial modelling of biodiversity at the community level // J. Appl. Ecol. 2006. V. 43. N. 3. P. 393–404.

Fitzpatrick M. C., Sanders N. J., Ferrier S., Longino J. T., Weiser M. D., Dunn R. R. Forecasting the future of biodiversity: a test of single‐ and multi‐species models for ants in North America // Ecography. 2011. V. 34. N. 5. P. 836–847.

Foden W. B., Young B. E., Akçakaya H. R., Garcia R. A., Hoffmann A. A., Stein B. A., Thomas C. D., Wheatley C. J., Bickford D., Carr J. A., Hole D. G., Martin T. G., Pacifici M., Pearce-Higgins J. W., Platts P. J., Visconti P., Watson J. E. M., Huntley B. Climate change vulnerability assessment of species // Wiley Interdisciplinary Rev.: Climate Change. 2019. V. 10. Article number: e551.

Forrester D. I., Tachauer I. H., Annighöefer P., Barbeito I. G., Pretzsch H., Ruiz-Peinado R., Stark H., Vacchiano G., Zlatanov T., Chakraborty T., Saha S., Sileshi G. W. Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate // For. Ecol. Manag. 2017. V. 396. P. 160–175.

Fu L. Y., Lei X. D., Hu Z. D., Zeng W. S., Tang S. Z., Marshall P., Cao L., Song X. Y., Yu L., Liang J. J. Integrating regional climate change into allometric equations for estimating tree aboveground biomass of Masson pine in China // Ann. For. Sci. 2017a. V. 74. Article number: 42.

Fu L., Sun W., Wang G. A climate-sensitive aboveground biomass model for three larch species in northeastern and northern China // Trees. 2017b. V. 31. P. 557–573.

Gao Z. G., Wang Q. Y., Hu Z. D., Luo P., Duan G. S., Sharma R. P., Ye Q. L., Gao W. Q., Song X. Y., Fu L. Y. Comparing independent climate-sensitive models of aboveground biomass and diameter growth with their compatible simultaneous model system for three larch species in China // Int. J. Biomath. 2019. V. 12. N. 7. Article number: 1950053.

Ghosh S., Wildi O. Statistical analysis of landscape data: Space-for-time, probability surfaces and discovering species // A changing world: Challenges for landscape research. F. Kienast, O. Wildi, S. Ghosh (Eds.). Landscape Ser. V. 8. Dordrecht: Springer, 2007. P. 209–221.

Givnish T. J. Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox // Silva Fenn. 2002. V. 36. N. 3. P. 703–743.

Guisan A., Thuiller W. Predicting species distribution: Оffering more than simple habitat models // Ecol. Let. 2005. V. 8. N. 9. P. 993–1009.

He X., Lei X.-D., Dong Li-Hu. How large is the difference in large-scale forest biomass estimations based on new climate-modified stand biomass models? // Ecol. Indic. 2021. V. 126. Article number: 107569.

Hirata R., Saigusa N., Yamamoto S., Ohtani Y., Ide R., Asanuma J., Gamo M., Hirano T., Kondo H., Kosugi Y., Li S.-G., Nakai Y., Takagi K., Tani M., Wang H. Spatial distribution of carbon balance in forest ecosystems across East Asia // Agr. For. Meteorol. 2008. V. 148. P. 761–775.

Horrocks C. A., Newsham K. K., Cox F., Garnett M. H., Robinson C. H., Dungait J. A. J. Predicting climate change impacts on maritime Antarctic soils: a space-for-time substitution study // Soil Biol. Biochem. 2020. V. 141. Article number: 107682.

Huang X., Tang G., Zhu T., Ding H., Na J. Space-for-time substitution in geomorphology: A critical review and conceptual framework // J. Geogr. Sci. 2019. V. 29. N. 10. P. 1670–1680.

Huston M. A., Wolverton S. The global distribution of net primary production: resolving the paradox // Ecol. Monogr. 2009. V. 79. N. 3. P. 343–377.

Johnston C., Buongiorno J., Nepal P., Prestemon J. From source to sink: past changes and model projections of carbon sequestration in the global forest sector // J. For. Econ. 2019. V. 34. N. 1–2. P. 47–72.

Liebig J. Die organische Chemie in ihrer Anwendung auf Agricultur und Physiologie. Braunschweig: Verlag Vieweg, 1840. In: Deutsches Textarchiv, abgerufen am 26.11.2019.

Lieth H. Modeling the primary productivity of the world // Int. Sect. Ecol. Bull. 1974. V. 4. P. 11–20.

Luo Y. J., Wang X. K., Zhang X. Q., Ren Y., Poorter H. Variation in biomass expansion factors for China’s forests in relation to forest type, climate, and stand development // Ann. For. Sci. 2013. V. 70. N. 6. P. 589–599.

Ma Z. H., Peng C. H., Zhu Q., Chen H., Yu G. R., Li W. Z., Zhou X. L., Wang W. F., Zhang W. H. Regional drought-induced reduction in the biomass carbon sink of Canada’s boreal forests // PNAS. 2012. V. 109. N. 7. P. 2423–2427.

Marcolla B., Migliavacca M., Rödenbeck C., Cescatti A. Patterns and trends of the dominant environmental controls of net biome productivity // Biogeosciences. 2020. V. 17. P. 2365–2379.

McKenney D. W., Pedlar J. H., Rood R. B., Price D. Revisiting projected shifts in the climate envelopes of North American trees using updated general circulation models // Glob. Change Biol. 2011. V. 17. P. 2720–2730.

Miyanishi K., Johnson E. A. Coastal dune succession and the reality of dune processes In: Plant Disturbance Ecol.: The Process and the Response / E. A. Johnson, and K. Miyanishi (Eds.). San Diego, CA: Acad. Press, 2007. P. 249–282.

Mugasha W. A., Eid T., Bollandsås O. M., Malimbwi R. E., Chamshama S. A. O., Zahabu E., Katani J. Z. Allometric models for prediction of aboveground biomass of single trees in miombo woodlands in Tanzania // Proc. First Climate Change Impacts, Mitigation and Adaptation Programme Sci. Conf., 2012. P. 8–17.

Pastor J., Aber J. D., Melillo J. M. Biomass prediction using generalized allometric regressions for some Northeast tree species // For. Ecol. Manag. 1984. V. 7. P. 265–274.

Qiu Q., Yun Q., Zuo Sh., Yan J., Hua L., Ren Y., Tang J., Li Y., Chen Q. Variations in the biomass of Eucalyptus plantations at a regional scale in Southern China // J. For. Res. 2018. V. 29. N. 5. P. 1263–1276.

Reich P. B., Luo Y. J., Bradford J. B., Poorter H., Perry C. H., Oleksyn J. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots // PNAS. 2014. V. 111. Iss. 38. P. 13721–13726.

Ricklefs R. E. Community diversity: Relative roles of local and regional processes // Science. 1987. V. 235 (4785). P. 167–171.

Royer-Tardif S., Boisvert-Marsh L., Godbout J., Isabel N., Aubin I. Finding common ground: Toward comparable indicators of adaptive capacity of tree species to a changing climate // Ecol. Evol. 2021. Preprint.

Rudgers J. A., Hallmark A., Baker S. R., Baur L., Hall K. M., Litvak M. E., Muldavin E. H., Pockman W. T., Whitney K. D. Sensitivity of dryland plant allometry to climate // Funct. Ecol. 2019. V. 33. N. 12. P. 2290–2303.

Rukhovich D. I., Pankova E. I., Kalinina N. V., Chernousenko G. I. Quantification of the parameters of zones and facies of chestnut soils in Russia on the basis of the climatic-soil-textural index // Euras. Soil Sci. 2019. V. 52. N. 3. P. 271–282 (Original Rus. Text © D. I. Rukhovich, E. I. Pankova, N. V. Kalinina, G. I. Chernousenko, 2019, publ. in Pochvovedenie. 2019. N. 3. P. 304–316).

Schaphoff S., Reyer C. P., Schepaschenko D., Gerten D., Shvidenko A. Tamm review: observed and projected climate change impacts on Russia’s forests and its carbon balance // For. Ecol. Manag. 2016. V. 361. P. 432–444.

Seidl R., Albrich K., Thom D., Rammer W. Harnessing landscape heterogeneity for managing future disturbance risks in forest ecosystems // J. Environ. Manag. 2018. V. 209. P. 46–56.

Shelford V. E. Animal communities in temperate America as illustrated in the Chicago region: a study in animal ecology. Iss. 5. Part 1. Publ. Geogr. Soc. Chicago Univ. Chicago Press, 1913. 362 p.

Singh T. Generalizing biomass equations for the boreal forest region of west-central Canada // For. Ecol. Manag. 1986. V. 17. P. 97–107.

Sopp S. B. D., Valbuena R. The generalized plant allometry that advances metabolic ecology theory // Res. Square. 2021. Preprint.

Spathelf P., Stanturf J., Kleine M., Jandl R., Chiatante D., Bolte A. Adaptive measures: integrating adaptive forest management and forest landscape restoration // Ann. For. Sci. 2018. V. 75. N. 2. Article number: 55.

Stegen J. C., Swenson N. G., Enquist B. J., White E. P., Phillips O. L., Jorgensen P. M., Weiser M. D., Mendoza A. M., Vargas P. N. Variation in above-ground forest biomass across broad climatic gradients // Glob. Ecol. Biogeogr. 2011. V. 20. N. 5. P. 744–754.

Thuiller W., Lavorel S., Araújo M. B., Sykes M. T., Prentice I. C. Climate change threats to plant diversity in Europe// PNAS. 2005. V. 102. P. 8245–8250.

Toromani E., Bojaxhi F. Growth response of silver fir and Bosnian pine from Kosovo // South-East Europ. For. 2010. V. 1. N. 1. P. 20–27.

Usoltsev V. A. Single-tree biomass data for remote sensing and ground measuring of Eurasian forests: digital version. The second edition, enlarged. Yekaterinburg: Ural St. For. Engineer. Univ.; Bot. Garden, Ural Br. Rus. Acad. Sci., 2020. https://elar.usfeu.ru/bitstream/ 123456789/9647/2/Base1_v2_ob.pdf

Usoltsev V. A., Kolchin K. V., Chasovskikh V. P. Offset modelli allometriche generale ad una stima della biomassa locale di abeti in Eurasia (Biases of generic allometric models when local estimating spruce tree biomass in Eurasia) // Ital. Sci. Rev. 2017. V. 5–6. Iss. 48–49. P. 27–31.

Usoltsev V. A., Shobairi S. O., Tsepordey I. S., Chasovskikh V. P. On some differences in the response of Picea spp. and Abies spp. single-tree biomass structure to changes in temperatures and precipitation in Eurasia // Environ. Ecol. 2020. V. 38. N. 3. P. 300–315.

Usoltsev V. A., Zhukow W., Osmirko A. A., Tsepordey I. S., Chasovskikh V. P. Additive biomass models for Larix spp. single-trees sensitive to temperature and precipitation in Eurasia // Ecol. Questions. 2019. V. 30. N. 2. P. 57–67.

Vasseur F., Exposito-Alonso M., Ayala-Garay O. J., Wang G., Enquist B. J., Vile D., Violle C., Weigel D. Adaptive diversification of growth allometry in the plant Arabidopsis thaliana // PNAS. 2018. V. 115. N. 13. P. 3416–3421.

Veloz S., Williams J. W., Blois J. L., He F., Otto‐Bliesner B., Liu Z. No-analog climates and shifting realized niches during the late Quaternary: Implications for 21st-century predictions by species distribution models // Glob. Change Biol. 2012. V. 18. N. 5. P. 1698–1713.

Wade A. A., Hand B. K., Kovach R. P., Muhlfeld C. C., Waples R. S., Luikart G. Assessments of species’ vulnerability to climate change: From pseudo to science // Biodivers. Conserv. 2017. V. 26. P. 223–229.

West G. B., Brown J. H., Enguist B. J. A general model for the structure and allometry of plant vascular system // Nature. 1999. V. 400. P. 664–667.

Wilmking M., Juday G. P., Barber V. A., Zald H. S. Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds // Glob. Change Biol. 2004. V. 10. P. 1724–1736.

Wondrade N., Dick O. B., Tveite H. Estimating aboveground biomass and carbon stock in the Lake Hawassa Watershed, Ethiopia by integrating remote sensing and allometric equations // For. Res. 2015. V. 4. N. 3. Article number: 1000151.

World Weather Maps, 2007. https://www.mapsofworld.com/referrals/weather.

Wu Z., Dai E. F., Wu Z. F., Lin M. Z. Assessing differences in the response of forest aboveground biomass and composition under climate change in subtropical forest transition zone // Sci. Total Environ. 2020. V. 706. Article number: 135746.

Xiang W., Li L., Ouyang S., Xiao W., Zeng L., Chen L., Lei P., Deng X., Zeng Y., Fang J., Forrester D. I. Effects of stand age on tree biomass partitioning and allometric equations in Chinese fir (Cunninghamia lanceolata) plantations // Europ. J. For. Res. 2021. V. 140. N. 2. P. 317–332.

Zeng W. S., Duo H. R., Lei X. D., Chen X. Y., Wang X. J., Pu Y., Zou W. T. Individual tree biomass equations and growth models sensitive to climate variables for Larix spp. in China // Europ. J. For. Res. 2017. V. 136. N. 2. P. 233–249.

Zhang L., Deng X., Lei X. D., Xiang W., Peng C., Lei P., Yan W. Determining stem biomass of Pinus massoniana L. through variations in basic density // Forestry. 2012. V. 85. N. 5. P. 601–609.


Return to list