Petrunina E. A., Loskutov S. R., Ryazanova T. V., Aniskina A. A., Permyakova G. V., Stasova V. V. Comparative Analysis of Physical-Chemical Properties of Larch and Pine Bark: Thermal Analysis and Analytical Pyrolysis
1 V. N. Sukachev Inst. For., Rus. Acad. Sci., Sib. Br.
Fed. Res. Center Krasnoyarsk Sci. Center, Rus. Acad. Sci., Sib. Br.
Akademgorodok, 50/28, Krasnoyarsk, 660036 Russian Federation
2 Reshetnev Siberian State University of Science and Technology
Prospekt Mira, 82, Krasnoyarsk, 660049 Russian Federation
E-mail: petrunina@ksc.krasn.ru, lsr@ksc.krasn.ru, tatyana-htd09@mail.ru, aniskina_a@ksc.krasn.ru,
Abstract
UDC 630*812.14+633.877.2+633.877.3
How to cite: Petrunina E. A.1, Loskutov S. R.1, Ryazanova T. V.2, Aniskina A. A.1, Permyakova G. V.1, Stasova V. V.1 Comparative analysis of physical-chemical properties of larch and pine bark: thermal analysis and analytical pyrolysis // Sibirskij Lesnoj Zurnal (Sib. J. For. Sci.). 2022. N. 4. P. 35–49 (in Russian with English abstract and references).
DOI: 10.15372/SJFS20220404
© Petrunina E. A., Loskutov S. R., Ryazanova T. V., Aniskina A. A., Permyakova G. V., Stasova V. V., 2022
The study focuses on the thermal analysis and flash pyrolysis of bark of Siberian larch (Larix sibirica Ledeb.) and Scots pine (Pinus sylvestris L.). Using thermogravimetry (TG/DTG) and differential scanning calorimetry (DSC), a number of patterns of thermal decomposition of bark were established. The fourth derivatives of the DTG contours revealed differences in the "fractionality" of mass loss during heating of the bark samples. The thermal decomposition kinetics of bark was investigated using the Ozawa-Flynn-Wall isoconversion method. The obtained dependence of the activation energy (Ea) on the conversion degree was used to calculate the thermodynamic parameters (ΔH, ΔG and ΔS) of thermal decomposition. The mean values of Ea, ΔH, ΔG and ΔS were 206.7, 201.1, 248.7 kJ×mol–1 and –78.0 J×(mol×K)–1 for larch bark (LB) and 235.3, 229.7, 310 kJ×mol–1 and –129.4 J×(mol×K)–1 for pine bark (PB). The composition of mono-, sesqui-, diterpenes and oxygen-containing hydrocarbons of bark was determined by headspace GC/MS analysis. 37 and 41 volatile organic compounds were identified for LB and PB, respectively. The thermal stability of LB and PB was characterized using recalcitrant indices calculated from TG and DSC data. Integral values of exothermic effects of thermo-oxidative degradation were 15.1 kJ×g–1 for LB and 15.9 kJ·g–1 for PB. 55 flash pyrolysis products were identified, which accounted for 77.6 % of the total peak area for LB and 89.7 % for PB.
Article
СПИСОК ЛИТЕРАТУРЫ (REFERENCES)
Анучин Н. П. Лесная таксация. 6-е изд. М.: ВНИИЛМ, 2004. 552 с. [Anuchin N. P. Lesnaya taksatsiya (For. invent.). 6-e izd. (6th Ed.). Moscow: VNIILM, 2004. 552 p. (in Russian)].
Валеева А. Р. Валиуллина А. И., Бикбулатова Г. М., Башкиров В. Н. Уменьшение массовой доли свободного формальдегида в фенолоформальдегидных смолах с замещением фенола жидкими продуктами пиролиза древесины // Деревообр. пром-сть. 2021. № 3. С. 94–102 [Valeeva A. R., Valiullina A. I., Bikbulatova G. M., Bashkirov V. N. Umen'shenie massovoy doli svobodnogo formal'degida v fenoloformal'degidnykh smolakh s zamescheniem fenola zhidkimi produktami piroliza drevesiny (Reducing the mass fraction of free formaldehyde in phenol-formaldehyde resins with the replacement of phenol by liquid products of wood pyrolysis) // Derevoobr. prom-st' (Wood Processing Industry). 2021. N. 3. P. 94–102 (in Russian)].
Валеева А. Р. Применение жидких продуктов быстрого пиролиза древесных отходов в качестве компонента фенолоформальдегидных смол: автореф. дис. … канд. тех. наук: 05.21.03. Казань: КНИТУ, 2022. 16 с. [Valeeva A. R. Primenenie zhidkikh produktov bystrogo piroliza drevesnykh otkhodov v kachestve komponenta fenoloformal'degidnykh smol: avtoref. dis. … kand. tekh. nauk: 05.21.03 (Application of liquid products of rapid pyrolysis of wood waste as a component of phenol-formaldehyde resins: Cand. Tech. Sci. (PhD) thesis), Kazan: KNITU (Kazan Nat. Res. Technol. Univ.), 2022. 16 p. (in Russian)].
Валиуллина А. И., Грачев А. Н., Валеева А. Р., Бикбулатова Г. М., Забелкин С. А., Башкиров В. Н. Использование биополиолов, полученных из жидких продуктов пиролиза березовых опилок, в качестве возобновляемого компонента в производстве жестких пенополиуретанов // Все материалы. Энциклопед. справочник. 2021. № 10. С. 41–48 [Valiullina A. I., Grachev A. N., Valeeva A. R., Bikbulatova G. M., Zabelkin S. A., Bashkirov V. N. Ispol'zovanie biopoliolov, poluchennykh iz zhidkih produktov piroliza berezovykh opilok, v kachestve vozobnovlyaemogo komponenta v proizvodstve zhestkikh penopoliuretanov (Use of biopolyols derived from liquid pyrolysis products of birch sawdust as a renewable component in the production of rigid polyurethane foams) // Vse materialy. Entsiklopedicheskiy spravochnik (All material. Encyclopedia Directory). 2021. N. 10. P. 41–48 (in Russian)].
Гайле А. А., Сомов В. Е., Варшавский О. М. Ароматические углеводороды: выделение, применение, рынок: cправочник. СПб.: Химиздат, 2000. 542 с. [Gayle A. A., Somov V. E., Varshavskiy O. M. Aromaticheskie uglevodorody: vydelenie, primenenie, rynok: spravochnik (Aromatic hydrocarbons: extraction, application, market: Reference book). St. Petersburg: Khimizdat, 2000. 542 p. (in Russian)].
Лоскутов С. Р., Петрунина Е. А., Шапченкова О. А., Пляшечник М. А., Стасова В. В. Физико-химические показатели коры лиственницы сибирской: натуральной, химически модифицированной и после адсорбции катионов тяжелых металлов // Лесн. вестн. 2020. Т. 24. № 2. С. 98–111 [Loskutov S. R., Petrunina E. A., Shapchenkova O. A., Plyashechnik M. A., Stasova V. V. Fiziko-khimicheskie pokazateli kory listvennitsy sibirskoy: natural'noy, khimicheski modifitsirovannoy i posle adsorbtsii kationov tyazhelykh metallov (Physical-chemical properties of natural, chemically modified, and post- heavy-metal- cation-adsorption Siberian larch bark) // Lesn. vestn. (For. Bull.). 2020. V. 24. N. 2. P. 98–111 (in Russian with English abstract)].
Лотова Л. И. Анатомия коры хвойных. М.: Наука, 1987. 152 с. [Lotova L. I. Anatomiya kory khvoynykh (Anatomy of coniferous bark). Moscow: Nauka (Science), 1987. 152 р. (in Russian)].
Оболенская А. В., Ельницкая З. П., Леонович А. А. Лабораторные работы по химии древесины и целлюлозы. М.: Экология, 1991. 320 с. [Obolenskaya A. V., Elnitskaya Z. P., Leonovich A. A. Laboratornye raboty po khimii drevesiny i tsellyulozy (Laboratory work on wood chemistry and cellulose). Moscow: Ekologiya (Ecology), 1991. 320 p. (in Russian)].
Рязанова Т. В., Репях С. М. Химия и технология коры. Красноярск: КГТА, 1996. 301 с. [Ryazanova T. V., Repyakh S. M. Khimiya i tekhnologiya kory (Chemistry and technology of bark). Krasnoyarsk: KGTA (Krasnoyarsk St. Acad. Technol.), 1996. 301 р. (in Russian)].
Семенович А. В., Лоскутов С. Р. Адсорбция катионных красителей модифицированной корой хвойных древесных пород // Хим. раст. сырья. 2004. № 3. С. 121–125 [Semenovich A. V., Loskutov S. R. Adsorbtsiya kationnykh krasiteley modifitsirovannoy koroy khvoynykh drevesnykh porod (Adsorption of cationic dyes by modified coniferous bark) // Kimiya rastitel'nogo syr'ya (Chem. Plant Raw Mat.). 2004. N. 3. P. 121–125 (in Russian with English abstract)].
Baroni É. G., Tannous K., Rueda-Ordόñez Y. J., Tinoco K. The applicability of isoconversional models in estimating the kinetic parameters of biomass pyrolysis // J. Therm. Anal. Calorim. 2016. V. 123. N. 2. P. 909–917.
Carrasco E., Smith K. J., Meloni G. Synchrotron photoionization study of Furan and 2-Methylfuran reactions with Methylidyne radical (CH) at 298 K // J. Phys. Chem. A. 2018. V. 122. N. 1. P. 280–291.
Chen H., Yue X., Yang J., Lv C., Dong S., Luo X., Sun Z., Zhang Y., Li B., Zhang F., Gu H., Yang Y., Zhang Q., Ge S., Bi H., Zheng D., Zhao Y., Li C., Peng W. Pyrolysis molecule of Torreya grandis bark for potential biomedicine // Saudi J. Biol. Sci. 2019. V. 26. Iss. 4. P. 808–815.
Dave A., Gupta G. K., Mondal M. K. Study on thermal degradation characteristics, kinetics, thermodynamic, and reaction mechanism analysis of Arachis hypogaea shell pyrolysis for its bioenergy potential // Biomass Convers. Biorefin. 2021. https://doi.org/10.1007/s13399-021-01749-7 (Publ. online: 14 July 2021).
Dibdiakova J., Wang L., Li H. Characterization of ashes from Pinus Sylvestris forest biomass // The 7th Int. Conf. Appl. Energy – ICAE2015 Energy Proc. 2015. V. 75. P. 186–191.
Dulman V., Odochian L., Dumitras M., Cucu-Man S. A study by non-isothermal thermal methods of spruce wood bark materialss after their application for dye removal // J. Serb. Chem. Soc. 2005. V. 70. N. 11. P. 1325–1333.
Harvey O. R., Kuo L.-J., Zimmerman A. R., Louchouarn P., Amonette J. E., Herbert B. E. An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (biochars) // Environ. Sci. Technol. 2012. V. 46. N. 3. P. 1415–1421.
Jadhav D. K., Khandelwal K. R., Ketkar A. R., Pisal S. S. Formulation and evaluation of mucoadhesive tablets containing eugenol for the treatment of periodontal diseases // Drug Develop. Industr. Pharm. 2004. V. 30. N. 2. P. 195–203.
Mamleev V., Bourbigot S., Le Bras M., Lefebvre J. Three model-free methods for calculation of activation energy in TG // J. Therm. Anal. Calorim. 2004. V. 78. P. 1009–1027.
Ozawa T. A new method of analyzing thermogravimetric data // Chem. Soc. Jap. 1965. V. 38. N. 11. P. 1881–1886.
Pásztory Z., Mohácsine I. R., Gorbacheva G., Börcsök Z. The utilization of tree dark // BioRes. 2016. V. 11. N. 3. P. 7859–7888.
Petrunina E. A., Shapchenkova O. A., Loskutov S. R. Physico-chemical parameters of Siberian larch (Larix sibirica L.) bark extracted with water-amino-alcoholic extractants // Khimiya Rastitel’nogo Syr’ya (Chem. Plant Raw Mat.). 2021. N. 2. P. 103–107.
Santín C., Doerr S. H., Merino A., Bucheli T. D., Bryant R., Ascough P., Gao X., Masiello C. A. Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars // Sci. Rep. 2017. V. 7. Article number: 11233.
Shangguan W., Chen Z., Zhao J, Song X. Thermogravimetric analysis of cork and cork components from Quercus variabilis // Wood Sci. Technol. 2018. V. 52. P. 181–192.
Shao Q., Wang C., Liu H., Wang Y., Guo J. Reaction mechanism and evolved gases of larch bark pyrolysis by TG‑FTIR analysis // Wood Sci. Technol. 2019. V. 53. Iss. 5. P. 101–118.
Yue X., Li X., Chen X., Ashraf M. A., Liu Z., Bi1 H., Zheng D., Zhao Y., Peng W. Molecules and functions of Cornus officinalis bark volatiles // Emir. J. Food Agr. 2018. V. 30. Iss. 10. P. 828–838.