RU EN

Page menu:

Usoltsev V. А., Tsepordey I. S. Geographical Patterns of Changes in the Basic Density of Wood and Bark of Forest-Forming Species of Eurasia

Authors:
Keywords:
stem wood and bark, mixed-effects model, geographic latitude and longitude
Pages:
59–68

Abstract

UDC 630*52:630*174.754

How to cite: Usoltsev V. А.1, 2, Tsepordey I. S.1 Geographical patterns of changes in the basic density of wood and bark of forest-forming species of Eurasia // Sibirskij Lesnoj Zurnal (Sib. J. For. Sci.). 2022. N. 3. P. 59–68 (in Russian with English abstract and references).

DOI: 10.15372/SJFS20220308

© Usoltsev V. А., Tsepordey I. S., 2022

Qualimetry of aboveground and underground biomass of trees is an integral part of studies of biological productivity and carbon depositing capacity of forest cover, necessary for the correct assessment of the carbon cycle in its spatial gradients and in relation to climate change. The great bulk of carbon is deposited in tree stems and largely depends on the basic density (BD) of wood and bark. The author's database on the qualimetry of forest-forming species of Northern Eurasia is used in the work. About 3.450 model trees of 9 tree species (genera) were selected from it. The constructed mixed-effects models describing the dependences of the BD of wood and bark on their dendrometric indicators, geographical coordinates and species belonging of trees, revealed a 0.25% decrease in the BD of wood by 1 °N. in the direction from south to north and 0.26 % decrease by 1 °E. in the direction from west to east. In the same gradients, the decrease in the BD of the stem bark is 0.55 % by 1 °N. and 0.28 % by 1 °E., respectively. The largest share of the explained variability of BD is accounted for by the species of trees – 74 % for wood and 87 % for bark, significantly less – by geographical location – 12 and 9 %, respectively, and the smallest share – by dendrometric indicators of trees 14 and 4 %, respectively. The ranking of species of equal-sized trees by BD value was performed, which showed that each species has a specific ratio of BD of wood and bark. This means that for a more correct assessment of the basic density and carbon deposition in wood and bark, it is necessary to process separately wood and bark of the disks removed from stems, and not the disks over bark as a whole. 

Article


СПИСОК ЛИТЕРАТУРЫ (REFERENCES)

Андрущенко А. П. Надземная фитомасса древостоев разного возраста в свежей субори // Тр. Харьков. с.-х. ин-та. Т. 240. Харьков, 1977. С. 53–56 [Andrushchenko A. P. Nadzemnaya fitomassa drevostoev raznogo vozrasta v svezhey subori (Aboveground phytomass of tree stands of different age in fresh subor) // Tr. Kharkov s.-kh. in-ta (Proc. Kharkov Agr. Inst. V. 240. Kharkov, 1977. P. 53–56 (in Russian)].

Гордина Н. П. Пространственная структура и продуктивность сосняков Нижнего Енисея. Красноярск: Изд-во Краснояр. ун-та, 1985. 128 с. [Gordina N. P. Prostranstvennaya struktura i produktivnost’ sosnyakov Nizhnego Eniseya (Spatial structure and productivity of pine forests of the Lower Yenisei river). Krasnoyarsk: Krasnoyarsk Univ. Publ., 1985. 128 p. (in Russian)].

Гусев И. И. Фракционный состав елового древостоя по элементам фитомассы // Учет лесного фонда и организация лесного хозяйства. Вып. 5. Красноярск: СибТИ, 1976. С. 25–30 [Gusev I. I. Fraktsionny sostav elovogo drevostoya po elementam fitomassy (Component composition of a spruce stand by phytomass elements) // Uchet lesnogo fonda i organizatsiya lesnogo khozyaystva (Accounting of the forest fund and organization of forestry). Iss. 5. Krasnoyarsk: SibTI (Sib. Inst. Technol.), 1976. P. 25–30 (in Russian)].

Дрейпер Н., Смит Г. Прикладной регрессионный анализ. М.: Статистика, 1973. 392 с. [Drаper N., Smith G. Prikladnoy regressionny analiz (Applied regression analysis). Moscow: Statistika, 1973. 392 р. (in Russian)].

Исаева Л. Н. Метод расчета локальной и средней плотности абсолютно сухой древесины в стволах сосны и лиственницы // Лесоведение. 1978. № 4. С. 90–94 [Isaeva L. N. Metod rascheta lokal’noy i sredney plotnosti absolyutno sukhoy drevesiny v stvolakh sosny i listvennitsy (Method of calculating the local and average density of absolutely dry wood in the stems of pine and larch) // Lesovedenie (For. Sci.). 1978. N. 4. P. 90–94 (in Russian with English abstract)].

Казимиров Н. И., Волков А. Д., Зябченко С. С., Иванчиков А. А., Морозова Р. М. Обмен веществ и энергии в сосновых лесах Европейского Севера. Л.: Наука. Ленингр. отд-ние, 1977. 304 с. [Kazimirov N. I., Volkov A. D., Zyabchenko S. S., Ivanchikov A. A., Morozova R. M. Obmen veshchestv i energii v sosnovykh lesakh Evropeyskogo Severa (Metabolism and energy in pine forests of the European North). Leningrad: Nauka (Science). Leningrad Br., 1977. 304 p. (in Russian)].

Казимиров Н. И., Морозова Р. М. Биологический круговорот веществ в ельниках Карелии. Л.: Наука. Ленингр. отд-ние, 1973. 175 с. [Kazimirov N. I., Morozova R. M. Biologicheskiy krugovorot veshchestv v el’nikakh Karelii (Biological cycling of substances in the spruce forests of Karelia). Leningrad: Nauka (Science). Leningrad Br., 1973. 175 p. (in Russian)].

Колтунова А. И., Усольцев В. А., Пальмова Н. В., Балицкий М. И., Кузьмин Н. И., Канунникова О. В. Фитомасса лесных культур в Оренбургской области // Актуальные проблемы лесного комплекса. Вып. 17. Брянск: БГИТА, 2007. С. 176–179 [Koltunova A. I., Usoltsev V. A., Pal’mova N. V., Balitskiy M. I., Kuzmin N. I., Kanunnikova O. V. Fitomassa lesnykh kul’tur v Orenburgskoy oblasti (Phytomass of forest crops in Orenburg Oblast) // Aktual’nye problemy lesnogo kompleksa (Actual problems of forest complex). Iss. 17. Bryansk: BGITA (Bryansk St. Acad. Engineer. & Technol.), 2007. P. 176–179 (in Russian with English abstract)].

Мелехов В. И., Бабич Н. А., Корчагов С. А. Качество древесины сосны в культурах. Архангельск: АГТУ, 2003. 110 с. [Melekhov V. I., Babich N. A., Korchagov S. A. Kachestvo drevesiny sosny v kul’turakh (Quality of pine wood in the crops). Arkhangelsk: AGTU (Arkhangelsk St. Univ. Technol.), 2003. 110 p. (in Russian)].

Молчанов А. А. Научные основы ведения хозяйства в дубравах лесостепи. М.: Наука, 1964. 255 с. [Molchanov A. A. Nauchnye osnovy vedeniya khozyaystva v dubravakh lesostepi (Scientific foundations of the management in the oak forests of the forest-steppe). Moscow: Nauka (Science), 1964. 255 p. (in Russian)].

Молчанов А. А. Продуктивность органической массы в лесах различных зон. М.: Наука, 1971. 275 с. [Molchanov A. A. Produktivnost’ organicheskoy massy v lesakh razlichnykh zon (Productivity of organic matter in the forests of various zones). Moscow: Nauka (Science), 1971. 275 p. (in Russian)].

Молчанов А. А. Продуктивность органической массы в сосняках беломошниках // Продуктивность органической и биологической массы леса. М.: Наука, 1974. С. 24–42. [Molchanov A. A. Produktivnost’ opganicheskoy massy v sosnyakakh belomoshnikakh (Productivity of organic mass in white-moss pine forests) // Produktivnost’ organicheskoy i biologicheskoy massy lesa (Productivity of organic and biological mass of forests). Moscow: Nauka (Science), 1974. P. 24–42 (in Russian)].

Полубояринов O. И. Плотность древесины. М.: Лесн. пром-сть, 1976. 160 с. [Poluboyarinov O. I. Plotnost’ drevesiny (Density of wood). Moscow: Lesn. prom-st’, 1976. 160 p. (in Russian)].

Семечкина М. Г. Структура фитомассы сосняков. Новосибирск: Наука. Сиб. отд-ние, 1978. 165 с. [Semechkina M. G. Struktura fitomassy sosnyakov (The structure of the phytomass of pine forests). Novosibirsk: Nauka (Science). Sib. Br., 1978. 165 p. (in Russian)].

Усольцев В. А. Моделирование структуры и динамики фитомассы древостоев. Красноярск: Изд-во Краснояр. ун-та, 1985. 191 с. [Usoltsev V. A. Modelirovanie struktury i dinamiki fitomassy drevostoev (Modeling of the structure and dynamics of tree stand phytomass). Krasnoyarsk: Krasnoyarsk Univ. Publ., 1985. 191 p. (in Russian)].

Baskerville G. L. Use of logarithmic regression in the estimation of plant biomass // Can. J. For. Res. 1972. V. 2. N. 1. P. 49–53.

Billard A., Bauer R., Mothe F., Colin F., Longuetaud F. Vertical variations in wood basic density for two softwood species // Europ. J. For. Res. 2021. V. 140. P. 1401–1416.

Broshtilova M. Aboveground phytomass of young Quercus longipes Stev. plantations on two site types // For. Sci. (Sofia). 1983. V. 20. Iss. 6. P. 40–50.

Burger H. Holz, Blattmenge und Zuwachs. XIII. Mitteilung. Fichten im gleichalterigen Hochwald // Mitteil. Schweiz. Anst. forstl. Versuchsw. 1953. V. 29. Iss. 1. P. 37–130.

Chave J., Muller-Landau H. C., Baker T. R., Easedale T. A., Ter Steege H., Webb C. O. Regional and phylogenetic variation of wood density across 2.456 neotropical tree species // Ecol. Appl. 2006. V. 16. Iss. 6. P. 2356–2367.

Chen L., Xiang W., Wu H., Lei P., Zhang S., Ouyang S., Deng X., Fang X. Tree growth traits and social status affect the wood density of pioneer species in secondary subtropical forest // Ecol. Evol. 2017. V. 7. Iss. 14. P. 5366–5377.

Donegan E., Sola G., Cheng Z., Birigazzi L., Gamarra J. G.-P., Henry M., Vieilledent G., Chiti T. GlobAllomeTree’s wood density database. Rome, Italy, 2014. P. 1–29.

Fu L. Y., Zeng W. S., Tang S. Z., Sharma R. P., Li H. K. Using linear mixed model and dummy variable model approaches to construct compatible single-tree biomass equations at different scales – A case study for Masson pine in Southern China // J. For. Sci. 2012. V. 58. Iss. 3. P. 101–115.

Fujimoto T., Kita K., Kuromaru M. Genetic control of intra-ring wood density variation in hybrid larch (Larix gmelinii var. japonica × L. kaempferi) // Wood Sci. Technol. 2008. V. 42. Iss. 3. P. 227–240.

Fujiwara T., Yamashita K., Kuroda K. Basic densities as a parameter for estimating the amount of carbon removal by forests and their variation // Bull. FFPRI. 2007. V. 6. Iss. 4. P. 215–226.

Gutiérrez O. A., Baonza M. V., Fernández-Golfín Seco J. I., Conde G. M., Hermoso P. E. Effect of growth conditions on wood density of Spanish Pinus nigra // Wood Sci. Technol. 2006. V. 40. Iss. 3. P. 190–204.

Hakkila P. Investigations on the basic density of Finnish pine, spruce and birch wood // Comm. Inst. For. Fenn. 1966. V. 61. Iss. 5. P. 1–98.

Jiang Z.-H., Wang X.-Q., Fei B.-H., Ren H.-Q., Liu X.-E. Effect of stand and tree attributes on growth and wood quality characteristics from a spacing trial with Populus xiaohei // Ann. For. Sci. 2007. V. 64. P. 807–814.

Karizumi N. The mechanism and function of tree root in the process of forest production. (I). Methods of investigation and estimation of the root biomass // Bull. Gov. For. Exp. Sta. 1974. V. 259. P. 1–99.

Kattge J., Bönisch G., Díaz S., Lavorel S., Prentice I. C., Leadley P. et al. TRY plant trait database – enhanced coverage and open access // Glob. Change Biol. 2020. V. 26. Iss. 1. P. 119–188.

Kerfriden B., Bontemps J.-D., Leban J.-M. Variations in temperate forest stem biomass ratio along three environmental gradients are dominated by interspecific differences in wood density // Plant Ecol. 2021. V. 222. Iss. 3. P. 289–303.

Kiaei M., Naji H. R., Abdul-Hamid H., Farsi M. Radial variation of fiber dimensions, annual ring width, and wood density from natural and plantation trees of alder (Alnus glutinosa) wood // Wood Res. 2016. V. 61. Iss. 1. P. 55–64.

Kimberley M. O., McKinley R. B., Cown D. J., Moore J. R. Modelling the variation in wood density of New Zealand-grown Douglas-fir // N. Z. J. For. Sci. 2017. V. 47. Iss. 1. P. 1–15.

Koch P. Utilization of the southern pines. 1. The raw material. USDA For. Serv. Agr. Handbook, 1972. V. 420. 736 p.

Larson P. R., Kretschmann D. E., Clark A. III, Isebrands J. G. Formation and properties of juvenile wood in southern pines: a synopsis. USDA For. Serv. Gen. Tech. Rep. FPL-GTR-129P, 2001. 42 р.

Le Goff N. Above and belowground biomass data for a set of beech trees of different age and crown classes sampled in Hesse state forest (NE France) with a view to analyzing the distribution and the allocation of biomass in the tree, 2019.

Leban J.-M., Kerfriden B., Jacquin P., Lacarin M., Taupin A., Mola C., Duprez C., Chabot S., Dauffy V., Morneau F., Wurpillot S., Hervé J.-C. Wood basic density for 125 tree forest species from the French forests, 2021.

Liepiņš J., Liepiņš K. Mean basic density and its axial variation in Scots pine, Norway spruce and birch stems // Res. Rural Dev. 2017. V. 1. P. 21–27.

Molteberg D., Høibø O. Modelling of wood density and fibre dimensions in mature Norway spruce // Can. J. For. Res. 2007. V. 37. Iss. 8. P. 1373–1389.

Naji H. R., Nia M. F., Kiaei M., Abdul-Hamid H., Soltani M., Faghihi A. Effect of intensive planting density on tree growth, wood density and fiber properties of maple (Acer velutinum Boiss.) // iForest. 2015. V. 9. P. 325–329.

Nogueira E. M., Fearnside P. M., Nelson B. W. Normalization of wood density in biomass estimates of Amazon forests // For. Ecol. Manag. 2008. V. 256. Iss. 5. P. 990–996.

Pascoa K., Gomide L., Tng D. Y. P., Scolforo J. R. S., Filho A. C. F., Mello J. M. de. How many trees and samples are adequate for estimating wood-specific gravity across different tropical forests? // Trees. 2020. V. 34. P. 1383–1395.

Pretzsch H., Biber P., Schütze G., Kemmerer J., Uhl E. Wood density reduced while wood volume growth accelerated in Central European forests since 1870 // For. Ecol. Manag. 2018. V. 429. P. 589–616.

Reyes G., Brown S., Chapman J., Lugo A. E. Wood densities of tropical tree species. USDA For. Serv., Southern For. Exp. St., New Orleans. Gen. Tech. Rep. SO-88, 1992. 15 p.

Roque R. M., Fo M. T. Wood density and fiber dimensions of Gmelina arborea in fast growth trees in Costa Rica: relation to the growth rate // Invest. Agr.: Sistemas y Recursos For. 2007. V. 16. Iss. 3. P. 267–276.

Saucier R., Taras M. A. Regional variation in specific gravity of seven pines in the Southern United States. USDA For. Serv. Res. Pap. SE-45, 1969. 16 p.

Shepard K. R., Shottafer J. E. Specific gravity and mechanical property-age relationships in red pine // For. Prod. J. 1992. V. 42. Iss. 7/8. P. 60–66.

Sousa V. B., Louzada J. L., Pereira H. Age trends and within-site effects in wood density and radial growth in Quercus faginea mature trees // For. Syst. 2016. V. 25. Iss. 1. e053.

Taras M. A., Saucier J. R. Wood density surveys of the minor species of yellow pine in the Eastern United States. I. Spruce pine (Pinus glabra Walt.). USDA For. Serv. Res. Pap. SE-34, 1968. 15 p.

Télles J. R. G., Martínez A. V., la Rosa A. B. de, Grande J. C., Mendoza C. P. Radial variation of basic density in Pinus patula Schltdl. et Cham. in three locations from Hidalgo state // Rev. Mex. Cien. For. 2011. V. 2. Iss. 7. P. 71–78.

Thor E., Bates A. L. Relationships of some wood properties of shortleaf pine with radial growth and site factors // TAPPI. 1970. V. 53. P. 290–294.

Trendelenburg R., Mayer-Wegelin H. Das Holz als Rohstoff. München: Carl Hanser Verlag, 1955. 541 p.

Tsoumis G., Panagiotidis N. Effect of growth conditions on wood quality characteristics of black pine (Pinus nigra Arn.) // Wood Sci. Technol. 1980. V. 14. P. 301–310.

Usoltsev V. A. Stem taper, density and dry matter content in biomass of trees growing in Central Eurasia: CD-monograph. Yekaterinburg: Ural St. For. Engineer. Univ.; Bot. Garden Rus. Acad. Sci., Ural Br., 2020. https://elar.usfeu.ru/handle/123456789/9649

Usoltsev V. A., Shobairi S. O. R., Tsepordey I. S., Chasovskikh V. P. Augmentative modelling: A template for Populus sp. stand biomass in Eurasia region // Ind. For. 2021a. V. 147. Iss. 3. P. 224–229.

Usoltsev V. A., Shobairi O., Tsepordey I. S., Zukow W. Allometric models to predicate single-tree biomass in the Eurasian Larix spp. forest // Ecol. Quest. 2021b. V. 32. Iss. 1. P. 29–36.

Vahey D. W., Zhu J. Y., Scott C. T. Wood density and anatomical properties in suppressed-growth trees: Comparison of two methods // Wood Fiber Sci. 2007. V. 39. Iss. 3. P. 462–471.

Vaughan D., Auty D., Kolb T. E., Meador A. J. S., Mackes K. H., Dahlen J., Moser W. K. Climate has a larger effect than stand basal area on wood density in Pinus ponderosa var. scopulorum in the southwestern USA // Ann. For. Sci. 2019. V. 76. Iss. 3. P. 1–12.

Vyskot M. Biomass of the tree layer of a spruce forest in the Bohemian Uplands. Praha: Academia, 1981. 397 p.

Wiemann M. C., Williamson G. B. Geographic variation in wood specific gravity: Effects of latitude, temperature, and precipitation // Wood Fiber Sci. 2002. V. 34. Iss. 1. P. 96–107.

Yang K.-C. Impact of spacing on juvenile wood and mature wood properties of white spruce (Picea glauca) // Taiwan Lin Ye Ke Xue. 2002. V. 17. Iss. 1. P. 13–29.

Yang K. C., Hazenberg G. Impact of spacing on tracheid length, relative density, and growth rate of juvenile wood and mature wood in Picea mariana // Can. J. For. Res. 2011. V. 24. Iss. 5. P. 996–1007.

Yeboah D., Burton A. J., Storer A. J., Opuni-Frimpong E. Variation in wood density and carbon content of tropical plantation tree species from Ghana // New For. 2014. V. 45. Iss. 1. P. 35–52.

Zanne A. E., Lopez-Gonzalez G., Coomes D. A., Ilic J., Jansen S., Lewis S. L., Miller R. B., Swenson N. G., Wiemann M. C., Chave J. Global wood density database. Dryad, 2009. http://hdl.handle.net/10255/dryad.235

Zeng W. S. Developing tree biomass models for eight major tree species in China // Biomass volume estimation and valorization for energy. Chapter 1. Intech Publ., 2017. P. 3–21.

Zeng W. S., Zhang H. R., Tang S. Z. Using the dummy variable model approach to construct compatible single-tree biomass equations at different scales – a case study for Masson pine (Pinus massoniana) in southern China // Can. J. For. Res. 2011. V. 41. Iss. 7. P. 1547–1554.

Zhang L., Shi H. Local modeling of tree growth by geographically weighted regression // For. Sci. 2003. V. 50. Iss. 2. P. 225–244.

Zhu J. Y., Scott C. T., Scallon K. L., Myers G. C. Effects of plantation density on wood density and anatomical properties of red pine (Pinus resinosa Ait.) // Wood Fiber Sci. 2007. V. 39. Iss. 3. P. 502–512.


Return to list