RU EN

Page menu:

Bukhanov E. R., Afanasova K. A., Vagner V. V., Volochaev M. N., Nikitina V. I., Pyatina S. A., Shefer A. D., Shabanov V. F. The Influence of Foliar Fertilizing on the Structural and Optical Properties of Wheat

Keywords:
photosynthesis, chloroplast, photonic crystal, electron microscopy, fluorescence spectroscopy, numerical modeling
Pages:
107–115

Abstract

UDC: 535.3

How to cite: Bukhanov E. R.1, 2, Afanasova K. A.2, Vagner V. V.3, Volochaev M. N.1, Nikitina V. I.4, Pyatina S. A.2, Shefer A. D.2, Shabanov V. F.1, 2 The influence of foliar fertilizing on the structural and optical properties of wheat // Sibirskij Lesnoj Zurnal (Sib. J. For. Sci.). 2024. N. 4. P. 107–115 (in Russian with English abstract and references).

DOI: 10.15372/SJFS20240410

EDN: …

© Bukhanov E. R., Afanasova K. A., Vagner V. V., Volochaev M. N., Nikitina V. I., Pyatina S. A., Shefer A. D., Shabanov V. F., 2024

Throughout its life cycle a plant receives nutrients from the soil and fertilizers that are introduced into it and then absorbed by the roots. Higher plants have an additional ability to absorb nutrients when their leaves are sprayed with a solution of a certain concentration. The amount of fertilizers applied to the soil must be determined in accordance with the analysis of its composition. However, it’s not obligatory when we apply foliar fertilization method, since the properties of the leaves depend not only on the type of plant, but also on the conditions in which it grew. This study for the first time introduces a method for determining optimal concentrations of foliar fertilization based on the structure and optical properties of the plant leaf. In 2023, Kuraginskoe production farm was chosen as a site of a field experience aimed at studying foliar fertilization of Novosibirskaya 31 spring soft wheat. The experiment was conducted in 4 ways: 1) control; 2) one-time foliar fertilizing in the tillering phase; 3) two times foliar fertilizing: in tillering and shooting phase; 4) triple fertilizing: in tillering phase, the shooting, and the beginning of earing. We used electron microscopy pictures to assess the standard deviation of thylakoids size as a degree of ordering. Based on models of one-dimensional photonic crystals, graphs of the density of photonic states were calculated. From the analysis of the obtained fluorescent spectra of the flag leaves, changes in the intensity and width of the spectrum lines are visible. Comparison of contours of the peak corresponding to photosystem (PS) II shows a difference in half-widths, which indicates a more active pumping of energy in a plant treated with triple fertilizing. The methods used in the study let us calculate a correlation coefficient equal almost to 1, which means strong link of these parameters. The study has shown that the main mechanism for increasing crop yield when applying foliar fertilizing is a more efficient transfer of energy from PS 2 to PS 1.

Article


СПИСОК ЛИТЕРАТУРЫ (REFERENCES)

Буханов Е. Р., Коршунов М. А., Шабанов А. В. Оптические процессы в фотосинтезе // Сиб. лесн. журн. 2018. № 5. С. 19–32 [Bukhanov E. R., Korshunov M. A., Shabanov A. V. Optical processes in photosynthesis // Sib. lesn. zhurn. (Sib. J. For. Sci.). 2018. N. 5. P. 19–32 (in Russian with English abstract)].

Буханов Е. Р., Шефер А. Д., Шабанов А. В., Гуревич Ю. Л., Крахалёв М. Н. Строение, оптические и спектральные характеристики эпикутикулярного воска хвои ели голубой // Сиб. лесн. журн. 2024. № 1. С. 97–106 [Bukhanov E. R., Shefer A. D., Shabanov A. V., Gurevich Yu. L., Krakhalev M. N. Stroenie, opticheskie i spektral’nye kharakteristiki epikutikulyarnogo voska khvoi eli goluboy (Structure, optical and spectral characteristics of epicuticular wax of blue spruce needles) // Sib. lesn. zhurn. (Sib. J. For. Sci.). 2024. N. 1. P. 97–106 (in Russian with English abstract and references)].

Давыдов А. С. Квантовая механика: учеб. пособ. Изд. 2-е испр. и перераб. М.: Наука, 1973. 703 с. [Davydov A. S. Kvantovaya mekhanika: ucheb. posob. Izd. 2-e, ispr. i pererab. (Quantum mechanics: tutorial. 2nd ed., revised and updated). Moscow: Nauka (Science), 1973. 703 p. (in Russian)].

Егоров В. С., Дзержинская А. А. Фолиарное применение удобрений и мехiнизм их поступления в растения // Пробл. агрохим. и экол. 2015. № 2. С. 51–57 [Egorov V. S., Dzerzhinskaya A. A. Foliarnoe primenenie udobreniy i mekhanizm ikh postupleniya v rasteniya (Foliar application of fertilizers and factors affecting their penetration into the leaf) // Probl. agrokhim. i ekol. (Probl. Agrochem. Ecol.). 2015. N. 2. P. 51–57 (in Russian with English abstract)].

Коршунов М. А., Шабанов А. В., Буханов Е. Р., Шабанов В. Ф. Влияние длиннопериодической упорядоченности в структуре растений на первичные стадии фотосинтеза // ДАН. 2018. Т. 478. № 3. С. 280–283 [Korshunov M. A., Shabanov A. V., Bukhanov E. R., Shabanov V. F. Vliyanie dlinnoperiodicheskoy uporyadochennosti v strukture rasteniy na pervichnye stadii fotosinteza (Effect of long-period ordering of the structure of a plant on the initial stages of photosynthesis) // DAN (Dokl. Phys.). 2018. V. 478. N. 1. P. 280–283 (in Russian with English abstract)].

Стасик О. О., Киризий Д. А., Прядкина Г. А. Фотосинтез и проблемы повышения продуктивности растений // Физиол. раст. и генет. 2013. Т. 45. № 6. С. 501–515 [Stasik O. O., Kiriziy D. A., Pryadkina G. A. Fotosintez i problemy povysheniya produktivnosti rasteniy (Photosynthesis and problems of increasing plant productivity) // Fiziol. rast. i genet. (Plant Physiol. Genet.). 2013. V. 45. N. 6. P. 501–515 (in Russian with English abstract)].

Тихонов А. Н. Трансформация энергии в хлоропластах – энергопреобразующих органеллах растительной клетки // Сорос. образов. журн. 1996. №. 4. С. 24–32 [Tikhonov A. N. Transformatsiya energii v khloroplastakh – energopreobrazuyushchikh organellakh rastitel’noy kletki (Transformation of energy in chloroplasts – energy-transforming organelles of a plant cell) // Soros. obrazov. zhurn. (Soros Educat. J.). 1996. N. 4. P. 24–32 (in Russian with English abstract)].

Шабанов А. В., Коршунов М. А., Буханов Е. Р. Особенности усиления электромагнитного поля и увеличение плотности фотонных состояний в растительных фотонно-кристаллических структурах // Комп. опт. 2019. Т. 43. № 2. С. 231–237 [Shabanov A. V., Korshunov M. A., Bukhanov E. R. Osobennosti usileniya elektromagnitnogo polya i uvelichenie plotnosti fotonnykh sostoyaniy v rastitel’nykh fotonno-kristallicheskikh strukturakh (Features of the amplification of the electromagnetic field and the density of states of photonic crystal structures in plants) // Komp. opt. (Comp. Optics). 2019. V. 43. N. 2. P. 231–237 (in Russian with English abstract and references)].

Шабанова К. А., Логинов Ю. Ю., Буханов Е. Р., Волочаев М. Н., Пятина С. А. Влияние структуры хлоропластов на плотность фотонных состояний и эффективность преобразования солнечной энергии // Сиб. аэрокосм. журн. 2021. Т. 22. №. 4. С. 708–717 [Shabanova K. A., Loginov Yu. Yu., Bukhanov E. R., Volochaev M. N., Pyatina S. A. Vliyanie struktury khloroplastov na plotnost’ fotonnykh sostoyaniy i effektivnost’ preobrazovaniya solnechnoy energii (The chloroplast structure influence on photon states density and efficiency of solar energy conversion) // Sib. aerokosm. zhurn. (Sib. Aerospace J.). 2021. V. 22. N. 4. P. 708–717 (in Russian with English abstract and references)].

Aguanno G. D., Mottiucci N., Scolora M., Bloemer M. J., Zheltikov A. M. Density of modes and tunneling times in finite one-dimensional photonic crystals: a comprehensive analysis // Phys. Rev. 2004. V. 70. N. 1. Article 016612.

Bukhanov E., Shabanov, A. V., Volochaev M. N., Pyatina, S. A. The role of periodic structures in light harvesting // Plants. 2021. V. 10. Iss. 9. Article 1967. 10 p.

Dekker J. P., Boekema E. J. Supramolecular organization of thylakoid membrane proteins in green plants // Biochim. Biophys. Acta (BBA) – Bioenergetics. 2005. V. 1706. N. 1–2. P. 12–39.

Ehsan S., Javed S., Saleem I., Habib F., Majeed T. Effect of humic acid foliar spraying and nitrogen fertilizers management on wheat yield // Int. J. Agronom. Agr. Res. 2014. V. 4. N. 4. P. 28–33.

Fageria N. K., Filhoa M. P. B., Moreirab A., Guimaresa C. M. Foliar fertilization of crop plants // J. Plant Nutrit. 2009. V. 32. N. 6 P. 1044–1064.

Ferreira K. N., Iverson T. M., Maghlaoui K., Barber J., Iwata S. Architecture of the photosynthetic oxygen-evolving center // Science. 2004. V. 303. Iss. 5665. P. 1831–1838.

Foliar fertilization. Scientific principles and field practices. First ed. / Fernandez V., Sotiropoulos T., Brow P. (Eds.). Paris: JFA, 2013. 140 p.

Garab G. Self-assembly and structural-functional flexibility of oxygenic photosynthetic machineries: personal perspectives // Photosynth Res. 2016. V. 127. Iss. 1. P. 131–150.

Hu Y., Burcus Z., Shimidholter U. Effect of foliar fertilization on the growth and mineral nutrient content of maize seedlings under drought and salinity // Soil Sci. Plant Nutrit. 2008. V. 54. Iss. 1. P. 133–141.

Kamiya N., Shen J. R. Crystal structure of oxygen-evolving photo- system II from Thermosynechococcus vulcanus at 3.7-angstrom resolution // PNAS. 2003. V. 100. Iss. 1. P. 98–103.

Korshunov M. A., Shabanov A. V., Bukhanov E. R., Shabanov V. F. Effect of long-period ordering of the structure of a plant on the initial stages of photosynthesis // Dokl. Phys. 2018. V. 63. N. 1. P. 1–4 (Original Rus. text © M. A. Korshunov, A. V. Shabanov, E. R. Bukhanov, V. F. Shabanov, 2018, publ. in Dokl. Akad. Nauk. 2018. V. 478. N. 3. P. 280–283).

Li M., Mukhopadhyay R., Svoboda V., Oung H. M. O., Mullendore D. L., Kirchhoff H. Measuring the dynamic response of the thylakoid architecture in plant leaves by electron microscopy // Plant Direct. 2020a. V. 4. Iss. 11. Article e00280.

Li F., Zhang L., Ji H., Xu Z., Zhou Y., Yang S. The specific W-boxes of GAPC5 promoter bound by TaWRKY are involved in drought stress response in wheat // Plant Sci. 2020b. V. 296. Article 110460.

Liu Z., Yan H., Wang K., Kuang T., Zhang J., Gui L., An X., Chang W. Crystal structure of spinach light-harvesting complex at 2.72 2 resolution // Nature. 2004. N. 428. P. 287–292.

Melash A. A., Mengistu D. K., Aberra D. A., Tsegay A. The influence of seeding rate and micronutrients foliar application on grain yield and quality traits and micronutrients of durum wheat // J. Cereal Sci. 2019. N. 85. P. 221–227.

Pietraszewska-Bogiel A., Gadella T. W. J. FRET microscopy: from principle to routine technology in cell biology // J. Microscopy. 2011. V. 241. N. 2. P. 111–118.

Shi J., Tian F., Lyu J., Yang M. Nanoparticle based fluorescence resonance energy transfer (FRET) for biosensing applications // J. Mater. Chem. B. 2015. V. 3. N. 35. P. 6989–7005.

Understanding and modeling Förster-type resonance energy transfer / Demir H. V., Hernandez Martinez P. L., Govorov A. (Eds.). Springer Briefs Appl. Sci. Technol. Springer Singapore, 2017. 40 p.

Vigneron J. P., Simonis P. Natural photonic crystals // Phys. B: Condensed Matter. 2012. V. 407. N. 20. P. 4032–4036.

Zaitseva R. I., Komarov N. M., Frid A. S., Anikina L. M., Zhyravleva A. S., Shumanova V. V., Sokolenko N. J., Popova G. G. The effect of soil salinization and pre-sowing seed treatment with silicon-containing micronutrient fertilizer on barley seedlings // IOP Conf. Ser.: The VIII Congr. Dokuchaev Soil Sci. Soc., 19-24 July 2021. Syktyvkar. IQP Publ., 2021. N. 862. Article 012089.


Return to list