RU EN

Page menu:

Paramonov А. А., Usoltsev V. А., Tretyakov S. V., Koptev S. V., Karaban А. A., Tsvetkov I. V., Davydov А. V., Tsepordey I. S. Yield Table of Willow Stands’ Phytomass of Arkhangelsk Oblast

Keywords:
willow plantations, aboveground phytomass of trees, regression model, growth progress tables
Pages:
33–39

Abstract

UDC 630*52:630*174.754(470.11)

How to cite: Paramonov А. А.1, Usoltsev V. А.3, 4, Tretyakov S. V.1, 2, Koptev S. V.1, 2, Karaban А. A.1, 2, Tsvetkov I. V.2, Davydov А. V.1, 2, Tsepordey I. S.4 Yield table of willow stands’ phytomass of Arkhangelsk Oblast // Sibirskij Lesnoj Zurnal (Sib. J. For. Sci.). 2023. N. 2. P. 33–39 (in Russian with English abstract and references).

DOI: 10.15372/SJFS20230204

© Paramonov А. А., Usoltsev V. А., Tretyakov S. V., Koptev S. V., Karaban А. A., Tsvetkov I. V., Davydov А. V., Tsepordey I. S., 2023

In Russia, the intensive growth of areas naturally overgrown with such species as willow, alder, pine, etc., increases the biodiversity of entire regions, but the contribution of these areas to the carbon balance and climate stabilization is mostly unknown. Especially critical in this regard is the situation with willow plantations, which was not included in the system of State accounting of the forest fund. Since the energy generated from willow plantations is CO2 neutral, the use of this renewable and sustainable energy source has the potential to reduce global CO2 emissions from fossil fuels. Willow phytomass can be used for the production of fuel in the form of chips, briquettes and pellets, and in some cases – for the production of bioethanol or wood gas. In addition to economic aspects, willow cultivation has a number of environmental advantages, such as the ability to accumulate toxins from polluted areas, improve landscaping and serve as hedges. To plan and manage forestry in willow plantations in the conditions of the North taiga subzone of Arkhangelsk Oblast and assess its contribution to the carbon balance, data on the biological productivity of willow trees and standards for assessing their phytomass are needed. The purpose of the study is to develop models and tables for assessing the structure and dynamics of the aboveground phytomass of the willow stands in the conditions of Arkhangelsk Oblast. To achieve it, the following tasks have been implemented: 52 sample plots have been established to assess aboveground phytomass of willows; regression models of the dependence of willow phytomass on the volume-forming inventory indicators of trees are constructed; the models obtained are combined with the yield table of willow stands and the table of age dynamics of willow phytomass is constructed according to site indices for the conditions of Arkhangelsk Oblast. A comparative analysis of the results obtained with data on the productivity of willows in Sweden showed that at the same age of stands, the stocks of aboveground phytomass of Swedish willow correspond to the stocks of phytomass of willows of Arkhangelsk Oblast at an average level between the I and II site productivity classes.

Article


СПИСОК ЛИТЕРАТУРЫ (REFERENCES)

Анучин Н. П. Лесная таксация. М.: Лесн. пром-сть, 1982. 552 c. [Anuchin N. P. Lesnaya taksatsiya (Forest inventory). Moscow: Lesn. prom-st’ (Forest industry), 1982. 552 p. (in Russian)].

Горобец А. И., Лихацкий Ю. П. Влияние почвенно-гидрологических условий на продуктивность микроротационной плантации ивы корзиночной // Тр. СПбНИИЛХ. 2016. № 4. С. 98–108 [Gorobets A. I., Likhatskiy Yu. P. Vliyanie pochvenno-gidrologicheskikh usloviy na produktivnost’ mikrorotatsionnoy plantatsii ivy korzinochnoy (Influence of soil hydrological conditions on the productivity microrotational plantations of basket willow) // Tr. SPbNIILKH (Proc. St. Petersburg For. Res. Inst.). 2016. N. 4. P. 98–108 (in Russian with English abstract)].

Гусев И. И. Моделирование экосистем. Архангельск: АГТУ, 2002. 112 c. [Gusev I. I. Modelirovanie ekosistem (Modelling of ecosystems). Arkhangelsk: AGTU (Arkhangelsk St. Univ. Technol.), 2002. 112 p. (in Russian)].

Демидова Н. А., Дуркина Т. М. Результаты испытания местных и интродуцированных видов рода Salix на европейском Севере России // Науч. ведом. БелГУ. Сер.: Естеств. науки. 2012. Т. 140. № 21. С. 23–29 [Demidova N. A., Durkina T. M. Rezul’taty ispytaniya mestnykh i introdutsirovannykh vidov roda Salix na evropeyskom Severe Rossii (Test results of the local and introduced Salix species in the European north of Russia) // Nauch. vedom. BelGU. Ser. Estestv. nauki (Sci. Proc. Belgorod St. Univ.: Nat. Sci.). 2012. V. 140. N. 21. P. 23–29 (in Russian with English abstract)].

Жижин С. М., Магасумова А. Г., Оплетаев А. С. Зарастание древесной растительностью сельскохозяйственных угодий в южной подзоне тайги Республики Удмуртия // Вестн. Бурят. гос. с.-х. акад. им. В. . Филиппова. 2021. Т. 63. № 2. С. 84–91 [Zhizhin S. M., Magasumova A. G., Opletaev A. S. Zarastanie drevesnoy rastitel'nost'yu sel'skohozyaystvennykh ugodiy v yuzhnoy podzone taygi Respubliki Udmurtiya (Overgrowing of agricultural lands with woody vegetation in the southern subzone of taiga in the republic of Udmurtia) // Vestn. Buryat. gos. s.-kh. akad. im. V. R. Filippova (Bull. Filippov Buryat St. Agr. Acad.). 2021. V. 63. N. 2. P. 84–91 (in Russian with English abstract)].

Парамонов А. А., Третьяков С. В., Коптев С. В. Таблицы хода роста нормальных ивовых древостоев таёжной зоны северо-востока европейской части России // Тр. СПбНИИЛХ. 2021. № 2. С. 17–27 [Paramonov A. A., Tret'yakov S. V., Koptev S. V. Tablitsy khoda rosta normal'nykh ivovykh drevostoev taezhnoy zony severo-vostoka evropeyskoy chasti Rossii (Growth tables of normal willow stands in the taiga zone of the north-east of the European part of Russia) // Tr. SPbNIILH (Proc. St. Petersburg For. Res. Inst.). 2021. N. 2. P. 17–27 (in Russian with English abstract).

Парамонов А. А., Усольцев В. А., Третьяков С. В., Коптев С. В., Карабан А. А., Цветков И. В., Давыдов А. В., Цепордей И. С. Биомасса деревьев ивы и ее аллометрические модели в условиях Архангельской области // Леса России и хоз-во в них. 2022. № 4 (83). С. 10–19 [Paramonov A. A., Usoltsev V. A., Tret'yakov S. V., Koptev S. V., Karaban A. A., Tsvetkov I. V., Davydov A. V., Tsepordey I. S. Biomassa derev'ev ivy i ee allometricheskie modeli v usloviyakh Arkhangel'skoy oblasti (Willow tree biomass and its allometric models in the conditions of the Arkhangelsk region) // Lesa Rossii i khoz-vo v nikh (Forests of Russia and economy in them). 2022. N. 4 (83). P. 10–19 (in Russian with English abstract and references)].

Поздняков Л. К., Протопопов В. В., Горбатенко В. М. Биологическая продуктивность лесов Средней Сибири и Якутии. Красноярск: Краснояр. кн. изд-во, 1969. 120 с. [Pozdnyakov L. K., Protopopov V. V., Gorbatenko V. M. Biologicheskaya produktivnost' lesov Sredney Sibiri i Yakutii (Biological productivity of forests in Central Siberia and Yakutia). Krasnoyarsk: Krasnoyarsk kn. izd-vo, 1969. 120 p. (in Russian)].

Скворцов А. К. Ивы СССР: Систематический и географический обзор. М.: Наука, 1968. 262 с. [Skvortsov A. K. Ivy SSSR: Sistematicheskiy i geograficheskiy obzor (Willows of the USSR: Systematic and geographical review). Moscow: Nauka (Science), 1968. 262 p. (in Russian)].

Усольцев В. А. Биологическая продуктивность лесов Северной Евразии: методы, база данных и ее приложения. Екатеринбург: УрО РАН, 2007. 636 с. [Usoltsev V. A. Biologicheskaya produktivnost' lesov Severnoy Evrazii: metody, baza dannykh i ee prilozheniya (Biological productivity of Northern Eurasian forests: Methods, database and its applications). Yekaterinburg: UrO RAN (Ural Br. Rus. Acad. Sci. Publ.), 2007. 636 p. (in Russian with English title, summary and contents)].

Фалин А. Ю. Содержание и доброкачественность дубильных веществ у трех видов рода Salix L. в Карелии // Тр. лесоинж. ф-та ПетрГУ. 2003. Т. 4. С. 141–143 [Falin A. Yu. Soderzhanie i dobrokachestvennost' dubil'nykh veshchestv u trekh vidov roda Salix L. v Karelii (The content and quality of tannins in three species of the genus Salix L. in Karelia) // Tr. lesoinzh. f-ta PetrGU (Proc. For. Engineer. Fac. Petrozavodsk St. Univ. Res. & Technol.). 2003. V. 4. P. 141–143 (in Russian with English summary)].

Шабуров В. И., Беляева И. В. Итоги работ по селекции ивовых на Урале // Леса Урала и хоз-во в них. Вып. 18. Екатеринбург: УГЛТА, 1995. С. 119–127 [Shaburov V. I., Belyaeva I. V. Itogi rabot po selektsii ivovykh na Urale (Results of work on selection of willows in the Urals) // Lesa Urala i khoz-vo v nikh (Forests of the Urals and economy in them). Iss. 18. Yekaterinburg: UGLTA (Ural St. Acad. For. Engineer.), 1995. P. 119–127 (in Russian with English summary)].

Baskerville G. L. Use of logarithmic regression in the estimation of plant biomass // Can. J. For. Res. 1972. V. 2. Iss. 1. P. 49–53.

Christersson L., Sennerby-Forsse L., Zsuffa L. The role and significance of woody biomass plantations in Swedish agriculture // For. Chron. 1993. V. 69. Iss. 6. P. 687–693.

Dixon R. K., Brown S., Houghton R. A., Solomon A. M., Trexler M. C., Wisniewski J. Carbon pools and flux of global forest ecosystems // Science. 1994. V. 263. N. 5144. P. 185–190.

Heller M. C., Keoleian G. A., Volk T. A. Life cycle assessment of a willow biomass cropping system // Biomass Bioenergy. 2003. V. 25. Iss. 2. P. 147–165.

Johansson T. Biomass of sallow (Salix caprea L.). Rep. 031. Uppsala: Swed. Univ. Agr. Sci., 2011. 32 p.

Krzyzniak M., Stolarski M., Waliszewska B., Szczukowski S., Tworkowski J., Zaluski D., Snieg M. Willow biomass as feedstock for an integrated multi-product biorefinery // Industr. Crops & Products. 2014. V. 58. P. 230–237.

Mahecha M. D., Bastos A., Bohn F. J., Eisenhauer N., Feilhauer H., Hartmann H., Hickler T., Kalesse-Los H., Migliavacca M., Otto F. E. L., Peng J., Quaas J., Tegen I., Weigelt A., Wendisch M., Wirth C. Biodiversity loss and climate extremes — study the feedbacks // Nature. 2022. V. 612. Р. 30–32.

Rowe R. L., Hanley M. E., Goulson D., Clarke D. J., Doncaster C. P., Taylor G. Potential benefits of commercial willow Short Rotation Coppice (SRC) for farm-scale plant and invertebrate communities in the agro-environment // Biomass Bioenergy. 2011. V. 35. Iss. 1. P. 325–336.

Sandak A., Sandak J., Waliszewska B., Zborowska M., Mleczek M. Selection of optimal conversion path for willow biomass assisted by near infrared spectroscopy // iForest. 2017. V. 10. Iss. 2. P. 506–514.

Statgraphics-19, 2022. http://www.statgraphics.com/

Usoltsev V. A., Vanclay J. K. Stand biomass dynamics of pine plantations and natural forests on dry steppe in Kazakhstan // Scand. J. For. Res. 1995. V. 10. P. 305–312. 


Return to list