RU EN

Page menu:

Polosukhina D. A., Trusov D. V., Titov S. V., Prokushkin A. S. Fractional Composition of Phytomass and Photosynthetic Pigments of the Shrub Layer of the Mixed Forest in the Middle Taiga Subzone

Keywords:
shrubs, mixed forest, middle taiga, aboveground phytomass stock, leaf area index, chlorophyll, carotenoids
Pages:
23–37

Abstract

UDC 582.475-145:581.132.1 (470.1- 924.82)

How to cite: Polosukhina D. A.1, 2, Trusov D. V.1, 2, Titov S. V.1, Prokushkin A. S.1, 2 Fractional composition of phytomass and photosynthetic pigments of the shrub layer of the mixed forest in the middle taiga subzone // Sibirskij Lesnoj Zurnal (Sib. J. For. Sci.). 2024. N. 4. P. 23–37 (in Russian with English abstract and references).

DOI: 10.15372/SJFS20240403

EDN: …

© Polosukhina D. A., Trusov D. V., Titov S. V., Prokushkin A. S., 2024

The ongoing climate changes in the boreal zone affect carbon sequestration capacity of forest ecosystems. Thus, the environmental conditions and taxonomic diversity of the plant cover of ecosystems determine the relevance of studying the fractional composition of their phytomass and pigment complex in the stability and regulation of the activity of the photosynthetic apparatus. Living ground cover is typically underestimated or excluded when estimating forest phytomass due to the lack of standard equations. In this study, we assessed the stock of aboveground phytomass and developed a set of allometric equations for widespread species of living ground cover growing in the mixed forest of the middle taiga: Vaccinium vitis-idaea L., Ledum palustre L., Vaccinium uliginósum L., Vaccinium myrtillus L., Linnaéa borealis L. The highest percentage of occurrence in the forest ecosystems (60 %) is characterized by the species V. vitis-idaea. The dominant species is V. myrtillus, the reserve of which is 21.2 ± 52.8 g/m2. The ratio of the average supply of leaf phytomass to wood phytomass ranged from 0.08 ± 0.17 for V. myrtillus to 0.73 ± 1.04 for V. vitis-idaea. Leaf area index (LAI) and photosynthetic pigments for the study objects were also determined. The index varied from от 0.027 ± 0.062 м2 м-2 for V. myrtillus to 0.097 ± 0.077 м2 м-2 for L. palustre. In the mixed forest of the middle taiga zone, the largest amount of chlorophylls and carotenoids was found in the leaves of V. uliginósum, and the smallest – in V. vitis-idaea. The photosynthetic apparatus of the studied species is characterized by a fairly stable accumulation of photosynthetic pigments belonging to the light-harvesting complex.

Article


СПИСОК ЛИТЕРАТУРЫ (REFERENCES)

Ахметжанова А. А., Онипченко В. Г., Эльканова М. Х., Стогова А. В., Текеев Д. К. Изменение эколого-морфологических параметров листьев альпийских растений при внесении элементов минерального питания // Журн. общ. биол. 2011. Т. 72. № 5. С. 388–400 [Akhmetzhanova A. A., Onipchenko V. G., El'kanova M. Kh., Stogova A. V., Tekeev D. K. Izmenenie ekologo-morfologicheskikh parametrov list'ev al'piyskikh rasteniy pri vnesenii elementov mineral'nogo pitaniya (Changes in ecological-morphological parameters of alpine plant leaves upon application of mineral nutrients) // Zhurn. obshch. biol. (J. Gen. Biol.). 2011. V. 72. N. 5. P. 388–400 (in Russian with English abstract)].

Головко Т. К., Далькэ И. В., Дымова О. В., Захожий И. Г., Табаленкова Г. Н. Пигментный комплекс растений природной флоры европейского Северо-Востока // Изв. Коми науч. центра УрО РАН. 2010. № 1. С. 39–46 [Golovko T. K., Dal'ke I. V., Dymova O. V., Zakhozhiy I. G., Tabalenkova G. N. Pigmentny kompleks rasteniy prirodnoy flory evropeyskogo Severo-Vostoka // Izv. Komi nauch. tsentra UrO RAN (Proc. Komi Sci. Center Ural Br. Rus. Acad. Sci.). 2010. N. 1. P. 39–46 (in Russian with English abstract)].

Голубева Е. И., Червякова А. А., Шмакова Н. Ю., Зимин М. В., Тимохина Ю. И. Видовые и фитоценотические особенности пигментного состава растений Севера // Пробл. рег. экол. 2019. № 1. С. 6–12 [Golubeva E. I., Chervyakova A. A., Shmakova N. Yu., Zimin M. V., Timokhina Yu. I. Vidovye i fitotsenoticheskie osobennosti pigmentnogo sostava rasteniy Severa (Specific and phytocenotic peculiarities of the pigment structure of the plants of the North) // Probl. reg. ekol. (Reg. Environ. Iss.). 2019. N. 1. P. 6–12 (in Russian with English abstract)].

Дымова О. В., Головко Т. К. Фотосинтетические пигменты в растениях природной флоры таежной зоны европейского северо-востока России // Физиол. раст. 2019. Т. 66. № 3. С. 198–206 [Dymova O. V., Golovko T. K. Fotosinteticheskie pigmenty v rasteniyakh prirodnoy flory taezhnoy zony evropeyskogo severo-vostoka Rossii (Photosynthetic pigments in native plants of the taiga zone at the European Northeast Russia) // Fiziol. rast. (Plant Physiol.). 2019. V. 66. N. 3. P. 198–206 (in Russian with English abstract)].

Зарубина Л. В., Коновалов В. Н. Особенности сезонной динамики пигментов в листьях растений сосняка кустарничково-сфагнового // ИВУЗ. Лесн. журн. 2009. № 4. С. 24–33 [Zarubina L. V., Konovalov V. N. Osobennosti sezonnoy dinamiki pigmentov v list'yakh rasteniy sosnyaka kustarnichkovo-sfagnovogo (Features of the seasonal dynamics of pigments in the leaves of plants in dwarf shrub-sphagnum pine forest) // IVUZ. Lesn. zhurn. (For. J.). 2009. N. 4. P. 24–33 (in Russian with English abstract)].

Иванова Г. А., Конард С. Г., Макрае Д. Д., Безкоровайная И. Н., Богородская А. В., Жила С. В., Иванов В. А., Иванов А. В., Ковалева Н. М., Краснощекова Е. Н., Кукавская Е. А., Орешков Д. Н., Перевозникова В. Д., Самсонов Ю. Н., Сорокин Н. Д., Тарасов П. А., Цветков П. А., Шишикин А. С. Воздействие пожаров на компоненты экосистемы среднетаежных сосняков Сибири. Новосибирск: Наука, 2014. 232 с. [Ivanova G. A., Konard S. G., Makrae D. D., Bezkorovaynaya I. N., Bogorodskaya A. V., Zhila S. V., Ivanov V. A., Ivanov A. V., Kovaleva N. M., Krasnoshchekova E. N., Kukavskaya E. A., Oreshkov D. N., Perevoznikova V. D., Samsonov Yu. N., Sorokin N. D., Tarasov P. A., Tsvetkov P. A., Shishikin A. S. Vozdeystvie pozharov na komponenty ekosistemy srednetaezhnykh sosnyakov Sibiri (The impact of fires on the ecosystem components of the middle taiga pine forests of Siberia). Novosibirsk: Nauka (Science), 2014. 232 р. (in Russian)].

Карпенко Л. В., Гренадерова А. В., Михайлова А. Б., Подобуева О. В. Реконструкция локальных пожаров в голоцене по данным содержания макрочастиц угля в торфяной залежи в долине реки Дубчес // Сиб. лесн. журн. 2022. № 4. С. 3–13 [Karpenko L. V., Grenaderova A. V., Mikhaylova A. B., Podobueva O. V. Rekonstruktsiya lokal'nykh pozharov v golotsene po dannym soderzhaniya makrochastits uglya v torfyanoy zalezhi v doline reki Dubches // Sib. lesn. zhurn. (Sib. J. For. Sci.). 2022. N. 4. P. 3–13 (in Russian with English abstract)].

Климченко А. В., Верховец С. В., Слинкина О. А., Кошурникова Н. Н. Запасы крупных древесных остатков в среднетаежных экосистемах Приенисейской Сибири // Геогр. и природ. рес. 2011. № 2. С. 91–97 [Klimchenko A. V., Verkhovets S. V., Slinkina O. A., Koshurnikova N. N. Zapasy krupnykh drevesnykh ostatkov v srednetaezhnykh ekosistemakh Prieniseyskoy Sibiri (Stocks of large woody residues in the middle taiga ecosystems of the Yenisei Siberia) // Geogr. i prirod. res. (Geogr. Nat. Res.). 2011. N. 2. P. 91–97 (in Russian with English abstract)].

Лидер Е. Н., Казанцева Е. С., Елумеева Т. Г., Онипченко В. Г. Эколого-морфологические признаки растений альпийских болот Тебердинского заповедника // Бюл. МОИП. Отд. биол. 2016. Т. 121. №. 3. С. 51–59 [Lider E. N., Kazantseva E. S., Elumeeva T. G., Onipchenko V. G. Ekologo-morfologicheskie priznaki rasteniy al'piyskikh bolot Teberdinskogo zapovednika (Ecological and morphological characteristics of plants in alpine swamps of the Teberda Nature Reserve) // Byul. MOIP. Otd. biol. (Bull. Moscow Soc. Nat. Sec. Biol.). 2016. V. 121. N. 3. P. 51–59 (in Russian with English abstract)].

Марковская Е. Ф., Шмакова Н. Ю. Растения и лишайники Западного Шпицбергена: экология, физиология. Петрозаводск: Петрозаводск. гос. ун-т, 2017. 270 с. [Markovskaya E. F., Shmakova N. Yu. Rasteniya i lishayniki Zapadnogo Shpitsbergena: ekologiya, fiziologiya (Plants and lichens of Western Spitsbergen: ecology, physiology). Petrozavodsk: Petrozavodsk. gos. un-t (Petrozavodsk St. Univ.), 2017. 270 p. (in Russian)].

Махныкина А. В., Прокушкин А. С., Меняйло О. В., Верховец С. В., Тычков И. И., Урбан А. В., Рубцов А. В., Кошурникова Н. Н., Ваганов Е. А. Влияние климатических факторов на эмиссию СО2 из почв в среднетаежных лесах Центральной Сибири: эмиссия как функция температуры и влажности почвы // Экология. 2020. № 1. С. 51–61 [Makhnykina A. V., Prokushkin A. S., Menyaylo O. V., Verkhovets S. V., Tychkov I. I., Urban A. V., Rubtsov A. V., Koshurnikova N. N., Vaganov E. A. Vliyanie klimaticheskih faktorov na emissiyu SO2 iz pochv v srednetaezhnykh lesakh Tsentral'noy Sibiri: emissiya kak funktsiya temperatury i vlazhnosti pochvy (The impact of climatic factors on CО2 emissions from soils of middle-taiga forests in Central Siberia: Emission as a function of soil temperature and moisture) // Ekologiya (Ecology). 2020. N. 1. P. 51–61 (in Russian with English abstract)].

Панов А. В., Онучин А. А., Кошурникова Н. Н. Структура и динамика фитомассы на вырубках в сосняках лишайниковых Средней Сибири // Вестн. КрасГАУ. 2009. № 12(39). С. 129–133 [Panov, A. V., Onuchin A. A., Koshurnikova N. N. Struktura i dinamika fitomassy na vyrubkakh v sosnyakakh lishaynikovykh Sredney Sibiri (Structure and dynamics of phytomass in logging areas in lichen pine forests of Central Siberia) // Vestn. KrasGAU (Bull. Krasnoyarsk. St. Agr. Univ.). 2009. N. 12 (39). P. 129–133 (in Russian with English abstract)].

Пахарькова Н. В., Гетте И. Г., Андреева Е. Б., Масенцова И. В. Сезонные изменения пигментного состава растений разных систематических групп на территории заповедника «Столбы» // Вестн. КрасГАУ. 2014. № 8 (95). С. 139–143 [Pakhar'kova N. V., Gette I. G., Andreeva E. B., Masentsova I. V. Sezonnye izmeneniya pigmentnogo sostava rasteniy raznykh sistematicheskikh grupp na territorii zapovednika «Stolby» (Seasonal changes in the pigment composition of plants of different systematic groups on the territory of the Stolby Nature Reserve) // Vestn. KrasGAU (Bull. Krasnoyarsk. St. Agr. Univ.). 2014. N. 8 (95). P. 139–143 (in Russian with English abstract)].

Приложение к методике количественного определения объема поглощений парниковых газов, утвержденной приказом Минприроды России от 27.05.2022 № 371. М.: Минприроды России, 2022 [Prilozhenie k metodike kolichestvennogo opredeleniya ob’ema pogloshcheniy parnikovykh gazov, utverzhdennoy prikazom Minprirody Rossii ot 27.05.2022 № 371 (Appendix to the methodology for quantitative determination of the volume of greenhouse gas absorption, approved by Order of the Ministry of Natural Resources of Russia of 27 May, 2022 No. 371). Moscow: Minprirody Rossii (Ministry Nat, Res. Environ. Russia), 2022 (in Russian)].

Трефилова О. В., Ведрова Э. Ф., Кузьмичев В. В. Годичный цикл углерода в зеленомошных сосняках Енисейской равнины // Лесоведение. 2011. № 1. С. 3–12 [Trefilova O. V, Vedrova E. F., Kuz'michev V. V. Godichny tsikl ugleroda v zelenomoshnykh sosnyakakh Eniseyskoy ravniny (Annual carbon cycle in green moss pine forests of the Yenisei Plain) // Lesovedenie (For. Sci.). 2011. N. 1. P. 3–12 (in Russian with English abstract)].

Усольцев В. А., Цепордей И. С., Уразова А. Ф., Борников А. В. Биомасса подлесочных видов Урала и ее аллометрические модели // Леса России и хоз-во в них. 2023. № 1 (84). С. 30–40 [Usoltsev V. A., Tsepordey I. S., Urazova A. F., Bornikov A. V. Biomassa podlesochnykh vidov Urala i ee allometricheskie modeli (Biomass of undergrowth species of the Urals and its allometric models) // Lesa Rossii i khoz-vo v nikh (Forests of Russia and their Economy). 2023. N. 1 (84). P. 30–40 (in Russian with English abstract)].

Устинова М. В., Кравченко И. В., Русак С. Н., Ядгарова Д. А. Баланс пулов фотосинтетических пигментов и фенольных соединений у кустарничков в условиях слабонарушенной территории // Самар. науч. вестн. 2019. Т. 8. № 3 (28). С. 84–89 [Ustinova M. V., Kravchenko I. V., Rusak S. N., Yadgarova D. A. Balans pulov fotosinteticheskikh pigmentov i fenol'nykh soedineniy u kustarnichkov v usloviyakh slabonarushennoy territorii (Balance of pools of photosynthetic pigments and phenolic compounds in shrubs in a slightly disturbed area) // Samar. nauch. vestn. (Samara Sci. Bull.). 2019. V. 8. N. 3 (28). P. 84–89 (in Russian with English abstract)].

Уткин А. И., Ермолова Л. С., Уткина И. А. Площадь поверхности лесных растений: сущность, параметры, использование. Москва: Наука, 2008. 292 с. [Utkin A. I., Ermolova L. S., Utkina I. A. Ploshchad’ poverkhnosti lesnykh rasteniy: sushchnost’, parametry, ispol’zovanie (Surface area of ​​forest plants: essence, parameters, the use). Moscow: Nauka (Science), 2008. 292 p. (in Russian)].

Шидаков И. И. Эколого-морфологические особенности листьев альпийских растений Тебердинского заповедника: Автореф. дис. … канд. биол. наук: 03.00.05. Уфа: Башкир. гос. ун-т, 2009. 17 с. [Shidakov I. I. Ekologo-morfologicheskie osobennosti list'ev al'piyskikh rasteniy Teberdinskogo zapovednika: Avtoref. dis. … kand. biol. nauk: 03.00.05 (Ecological and morphological features of leaves of alpine plants of the Teberda nature reserve: Cand. Biol. Sci. (PhD) thesis (Botany). Ufa: Bashkir. gos. un-t (Bashkir. St. Univ.), 2009. 17 p. (in Russian)].

Шидаков И. И., Онипченко В. Г. Сравнение параметров листового аппарата растений альпийского пояса Тебердинского заповедника // Бюл. МОИП. Отд. биол. 2007. Т. 112. Вып. 4. С. 42–50 [Shidakov I. I., Onipchenko V. G. Sravnenie parametrov listovogo apparata rasteniy al’piyskogo poyasa Teberdinskogo zapovednika (Comparison of parameters of the leaf apparatus of plants in the alpine belt of the Teberda Nature Reserve) // Byul. MOIP. Otd. biol. (Bull. Moscow Soc. Nat. Sec. Biol.). 2007. V. 112. Iss. 4. P. 42–50 (in Russian with English abstract)].

Шмакова Н. Ю., Марковская Е. Ф. Фотосинтетические пигменты растений и лишайников арктических тундр Западного Шпицбергена // Физиол. раст. 2010. Т. 57. № 6. С. 819–825 [Shmakova N. Yu., Markovskaya E. F. Fotosinteticheskie pigmenty rasteniy i lishaynikov arkticheskikh tundr Zapadnogo Shpitsbergena (Photosynthetic pigments of plants and lichens inhabiting arctic tundra of West Spitsbergen) // Fiziol. rast. (Plant Physiol.). 2010. V. 57. N. 6. P. 819–825 (in Russian with English abstract)].

Akhmetzhanova A. A., Onipchenko V. G., El'kanova M. Kh., Stogova A. V., Tekeev D. K. Changes in ecological-morphological parameters of alpine plant leaves upon application of mineral nutrients // Biol. Bull. Rev. 2011. V. 72. N. 5. P. (Original Rus. text © A. A. Akhmetzhanova, V. G. Onipchenko, M. Kh. El'kanova, A. V. Stogova, D. K. Tekeev, 2011, publ. in Zhurn. obshch. biol. 2011. V. 72. N. 5. P. 388–400).

Azevedo O., Parker T. C., Siewert M. B., Subke J. A. Predicting soil respiration from plant productivity (NDVI) in a sub-Arctic tundra ecosystem // Rem. Sens. 2021. V. 13. Iss. 13. Article number 2571. 14 p.

Barnes J. D., Balaguer L., Manrique E., Elvira S., Davison A. W. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants // Environ. Exp. Bot. 1992. V. 32. Iss. 2. P. 85–100.

Brown S. Measuring carbon in forests: current status and future challenges // Environ. Pollut. 2002. V. 116. N. 3. P. 363–372.

Burba G., Anderson D. A. Brief practical guide to eddy covariance flux measurements: Principles and workflow examples for scientific and industrial applications. Lincoln, USA: LI-COR, 2010. 211 p.

Bussotti F., Pollastrini M. Do tree species richness, stand structure and ecological factors affect the photosynthetic efficiency in European forests? // Web Ecol. 2015. V. 15. N. 1. P. 39–41.

Castro-Díez P., Vaz A. S., Silva J. S. et al. Global effects of non-native tree species on multiple ecosystem services // Biol. Rev. 2019. V. 94. Iss. 4. P. 1477–1501.

Chen W., Li J., Zhang Y., Zhou F., Koehler K., Leblanc S., Fraser R., Olthof I., Zhang Y., Wang J. Relating biomass and leaf area index to non-destructive measurements in order to monitor changes in Arctic vegetation // Arctic. 2009. V. 62. N. 3. P. 281–294.

Conti G., Gorne L. D., Zeballos S. R., Lipoma M. L., Gatica G., Kowaljow E., Whitworth‐Hulse J. I., Cuchietti A., Poca M., Pestoni S., Fernandes P. M. Developing allometric models to predict the individual aboveground biomass of shrubs worldwide // Glob. Ecol. Biogeogr. 2019. V. 28. N. 7. P. 961–975.

Cornet D., Sierra J., Tournebize R. Assessing allometric models to predict vegetative growth of yams in different environments // Agronom. J. 2015. V. 107. N. 1. P. 241–248.

Crowther T., Todd-Brown K., Rowe C. et al. Quantifying global soil carbon losses in response to warming // Nature. 2016. V. 540. N. 7631. P. 104–108.

Dickinson Y. L., Zenner E. K. Allometric equations for the aboveground biomass of selected common eastern hardwood understory species // North. J. Appl. For. 2010. V. 27. N. 4. P. 160–165.

Duncanson L., Armston, J., Disney, M. Avitabile V., Barbier N., Calders K., Carter S., Chave J., Herold M., Crowther T. W., Falkowski M., Kellner J. R., Labrière N., Lucas R., MacBean N., McRoberts R. E., Meyer V., Næsset E., Nickeson J. E. , Paul K. I., Phillips O. L., Réjou-Méchain M., Román M., Roxburgh S., Saatchi S., Schepaschenko D., Scipal K., Siqueira P. R., Whitehurst A., Williams M. The importance of consistent global forest aboveground biomass product validation // Surv. Geophys. 2019. V. 40. P. 979–999.

Dyderski M. K., Jagodziński A. M. How do invasive trees impact shrub layer diversity and productivity in temperate forests? // Ann. For. Sci. 2021. V. 78. P. 1–14.

Dymov A. A., Grodnitskaya I. D., Yakovleva E. V., Dubrovskiy Y. A., Kutyavin I. N., Startsev V. V., Milanovsky E. Yu., Prokushkin A. S. Albic podzols of boreal pine forests of Russia: soil organic matter, physicochemical and microbiological properties across pyrogenic history // Forests. 2022. V. 13. Iss. 11. Article number 1831. 22 p.

Dymova O. V., Golovko T. K. Photosynthetic pigments in native plants of the taiga zone at the European Northeast Russia // Rus. J. Plant Physiol. 2019. V. 66. N. 3. P. 384–392 (Original Rus. text © O. V. Dymova, T. K. Golovko, 2019, publ. in Fiziologiya rasteniy. 2019. V. 66. N. 3. P. 198–206).

Gleason C. J., Im J. Forest biomass estimation from airborne LiDAR data using machine learning approaches // Rem. Sens. Environ. 2012. V. 125. Р. 80–91.

Götmark F., Götmark E., Jensen A. M. Why be a shrub? A basic model and hypotheses for the adaptive values of a common growth form // Front. Plant Sci. 2016. V. 7. N. 1. P. 1–14.

Horodecki P., Jagodziński A. M. Tree species effects on litter decomposition in pure stands on aforested post-mining sites // For. Ecol. Manag. 2017. V. 406. P. 1–11.

Ikawa H., Nakai T., Busey R. C., Kim Y., Kobayashi H., Nagai S., Ueyama M., Saito K., Nagano H., Suzuki R., Hinzman L. Understory CO2, sensible heat, and latent heat fluxes in a black spruce forest in interior Alaska // Agr. For. Meteorol. 2015. V. 214–215. N. 2. P. 80–90.

Ishihara M. I., Hiura T. Modeling leaf area index from litter collection and tree data in a deciduous broadleaf forest // Agr. For. Meteorol. 2011. V. 151. N. 7. P. 1016–1022.

Juutinen S., Virtanen T., Kondratyev V., Laurila T., Linkosalmi M., Mikola J., Nyman J., Räsänen A., Tuovinen J.-P., Aurela M. Spatial variation and seasonal dynamics of leaf-area index in the arctic tundra-implications for linking ground observations and satellite images // Environ. Res. Lett. 2017. V. 12. N. 9. Article number 095002. 11 p.

Kaitaniemi P., Lintunen A. Neighbor identity and competition influence tree growth in Scots pine, Siberian larch and silver birch // Ann. For. Sci. 2010. V. 67. Iss. 7. P. 604–611.

Koshurnikova N. N., Verkhovets S. V., Antamoshkina O. A., Trofimova N. V., Zlenko L. V., Zhuikov A. V., Garmash A. A. Structure of the organic matter pool in Pinus sibirica dominated forests of Central Siberia // Fol. For. Polon. Ser. A. 2015. V. 57. N. 4. P. 218–223.

Kulmala L., Pumpanen J., Hari P., Vesala T. Photosynthesis of ground vegetation in different aged pine forests: Effect of environmental factors predicted with a process‐based model // J. Veget. Sci. 2011. V. 22. N. 1. P. 96–110.

Liang X. Close-range remote sensing of forests: The state of the art, challenges, and opportunities for systems and data acquisitions // IEEE Geosci. Rem. Sens. Magazine. 2022. V. 10. N. 3. Р. 32–71.

Lichtenthaler H. K., Ac A., Marek M. V., Kalina J., Urban O. Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species // Plant Physiol. Biochem. 2007. V. 45. N. 8. P. 577–588.

Makhnykina A. V., Prokushkin A. S., Menyaylo O. V., Verkhovets S. V., Tychkov I. I., Urban A. V., Rubtsov A. V., Koshurnikova N. N., Vaganov E. A. The impact of climatic factors on CО2 emissions from soils of middle-taiga forests in Central Siberia: Emission as a function of soil temperature and moisture // Rus. J. Ecol. 2020. V. 51. N. 1. P. 45–56 (Original Rus. text © A. V. Makhnykina, A. S. Prokushkin, O. V. Menyaylo, S. V. Verkhovets, I. I. Tychkov, A. V. Urban, A. V. Rubtsov, N. N. Koshurnikova, E. A. Vaganov, 2020, publ. in Ekologiya. 2020. N. 1. P. 51–61).

Martin R., Müller B., Linstädter A., Frank K. How much climate change can pastoral livelihoods tolerate? Modelling rangeland use and evaluating risk // Glob. Environ. Change. 2014. V. 24. P. 183–192.

Mikola J., Virtanen T., Linkosalmi M., Vähä E., Nyman J., Postanogova O., Räsänen A., Kotze D. J., Laurila T., Juutinen S., Kondratyev V., Aurela M. Spatial variation and linkages of soil and vegetation in the Siberian Arctic tundra–coupling field observations with remote sensing data // Biogeosciences. 2018. V. 15. Iss. 9. P. 2781–2801.

Moore P. A., Pypker T. G., Hribljan J. A., Chimner R. A., Waddington J. M. Examining the peatland shrubification‐evapotranspiration feedback following multi‐decadal water table manipulation // Hydrol. Proces. 2022. V. 36. N. 11. P. 1–16.

Park S.-B, Knohl A., Migliavacca M., Thum T., Vesala T., Peltola O., Mammarella I., Prokushkin A., Kolle O., Lavrič J., Park S. S., Heimann M. Temperature control of spring CO2 fluxes at a coniferous forest and a peat bog in Central Siberia // Atmosphere. 2021. V. 12. Iss. 8. Article number 984. 19 p.

Polosukhina D. A., Masyagina O. V., Prokushkin A. S. Carbon photoassimilation by dominant species of mosses and lichens in pine forests of Central Siberia // IOP Conf. Ser. Earth Environ. Sci. V. 611. 11th Int. Conf. and Early Career Sci. School on Environ. Observ., Modeling and Inform. Systems, Enviromis 2020, Tomsk, 07–11 Sept., 2020. 2020. Article 012031. 11 p.

Peichl M., Martínez-García E., Fransson J. E. S., Wallerman J., Laudon H., Lundmark T., Nilsson M. B. Landscape‐variability of the carbon balance across managed boreal forests // Global Change Biol. 2023. V. 29. N. 4. P. 1119–1132.

Räsänen A., Juutinen S., Kalacska M., Aurela M., Heikkinen P., Mäenpää K., Rimali A., Virtanen T. Peatland leaf-area index and biomass estimation with ultra-high resolution remote sensing // GISci. & Rem. Sens. 2020. V. 57. N. 7. P. 943–964.

Roxburgh S. H., Paul K. I., Clifford D., England R. J., Raison R. J. Guidelines for constructing allometric models for the prediction of woody biomass: how many individuals to harvest? // Ecosphere. 2015. V. 6. Iss. 3. P. 1–27.

Rueden C. T., Eliceiri K. W. The image J ecosystem: An open and extensible platform for biomedical image analysis // Microscopy and Microanalysis. 2017. V. 23. N. S1. P. 226–227.

Scheiter S., Langan L., Higgins S. I. Next-generation dynamic global vegetation models: learning from community ecology // New Phytol. 2013. V. 198. N. 3. P. 957–969.

Schepaschenko D., Moltchanova E., Shvidenko A., Blyshchyk V., Dmitriev E., Martynenko O., See L., Kraxner F. Improved estimates of biomass expansion factors for Russian forests // Forests. 2018. V. 9. Iss. 6. Article number 312. 23 p.

Shmakova N. Yu., Markovskaya E. F. Photosynthetic pigments of plants and lichens inhabiting arctic tundra of West Spitsbergen // Rus. J. Plant Physiol. 2010. V. 57. Iss. 6. P. 764-769 (Original Rus. text © N. Yu. Shmakova, E. F. Markovskaya, 2010, publ. in Fiziologiya rasteniy. 2010. 2010. V. 57. N. 6. P. 819–825).

Sonnentag O., Talbot J., Chen J. M., Roulet N. T. Using direct and indirect measurements of leaf area index to characterize the shrub canopy in an ombrotrophic peatland // Agr. For. Meteorol. 2007. V. 144. N. 3–4. P. 200–212.

Spadavecchia L., Williams M., Bell R., Stoy P.C., Huntle, B., Van Wijk M. T. Topographic controls on the leaf area index and plant functional type of a tundra ecosystem // J. Ecol. 2008. V. 96. N. 6. P. 1238–1251.

Subke J. A., Tenhunen J. D. Direct measurements of CO2 flux below a spruce forest canopy // Agr. For. Meteorol. 2004. V. 126. N. 1–2. P. 157–168.

Temesgen H., Affleck D., Poudel K., Gray A., Sessions J. A review of the challenges and opportunities in estimating above ground forest biomass using tree-level models // Scand. J. For. Res. 2015. V. 30. Iss. 4. P. 326–335.

Wijk M. T. van, Williams M., Shaver G. Tight coupling between leaf area index and foliage N content in arctic plant communities // Oecologia. 2005. V. 142. N. 3. P. 421–427.

Wardle D. A., Jonsson M., Bansal S., Bardgett R. D., Gundale M. J., Metcalfe D. B. Linking vegetation change, carbon sequestration and biodiversity: insights from island ecosystems in a long‐term natural experiment // J. Ecol. 2012. V. 100. N. 1. P. 16–30.

Weiss M., Baret F., Smith G. J., Jonckheere I., Coppin P. Review of methods for in situ leaf area index (LAI) determination: Part II. Estimation of LAI, errors and sampling // Agr. For. Meteorol. 2004. V. 121. N. 1 P. 37–53.

Wellburn A. R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution // J. Plant Physiol. 1994. V. 144. N. 3. P. 307–313.

Zotino Tall Tower Observatory. Atmospheric research project in the Siberian taiga, 2024. https://www.zottoproject.org/


Return to list