Page menu:

Shavnin S. A., Golikov D. Yu., Montile A. A., Kapralov A. V., Grigor’eva A. V. Relationships Between Morphological Characteristics of Roots and Stem Sapwood Twisted Layer of Scots Pine Trees Growing in the Upper Bog

Pinus sylvestris L., tree stem twisting, twisted layer, root system asymmetry


UDC 57.054: [57.032+58.018] 674.032.16

How to cite: Shavnin S. A.1, Golikov D. Yu.1, Montile A. A.1, Kapralov A. V.2, Grigor’eva A. V.2 Relationships between morphological characteristics of roots and stem sapwood twisted layer of scots pine trees growing in the upper bog // Sibirskij Lesnoj Zurnal (Sib. J. For. Sci.). 2022. N. 1. P. 33–40 (in Russian with English abstract and references).

DOI: 10.15372/SJFS20220103

© Shavnin S. A., Golikov D. Yu., Montile A. A., Kapralov A. V., Grigor’eva A. V., 2022

The main objectives of the work are: to determine the presence and to assess the nature of relationship between the asymmetry of root system structure and the twisting of tree trunk; to study the nature of relationship between the morphological characteristics of the first order lateral roots, of the trunk and of the layer of sapwood for Scots pine trees growing under the extreme hydrothermal conditions in the upper bog (Middle Urals, Russia). In two groups of trees (twisted and non-twisted) of the VI class of age (32 and 38 trees in each respectively), there were measured: trunk diameters without of bark at the root collar layer and at the distance of 1.3 m from it; the heights; the angles of inclination of wood fibers; the length of the twisted part of trunk and the height at which it begins; the number of lateral roots of the first order and the perimeters and the angles between them. In the analysis of the structure of root system there were used the indices of its asymmetry in terms of the location in space and of the radial growth. Values of indices ​​were calculated for each tree as the average proportions of the difference between either the angles among individual roots or perimeters of roots from the average value. It was found that the variability of morphological characteristics of roots and the nature of their relationships differ in twisted and non-twisted trees. The evaluation of relationships between individual characteristics made it possible to identify 5 differences between two studied groups in the presence of statistically significant correlations (R = 0.34–0.52). The twisting of the trunk arises during the growth of tree and is not directly dependent from the structure of the root system. The appearance of the twisted layer is facilitated by a relatively small number of lateral roots and low spatial asymmetry of the root system. There are positive correlations between trunk twisted layer length and root growth characteristics, including maximum root thickness and asymmetry in root perimeters.



Боровиков А. М., Уголев Б. Н. Справочник по древесине / под ред. Б. Н. Уголева. М.: Лесн. пром-сть, 1989. 296 с. [Borovikov A. M., Ugolev B. N. Spravochnik po drevesine (Timber handbook) / B. N. Ugolev (Ed.). Moscow: Lesn. prom-st (Timber Industr.), 1989. 296 p. (in Russian)].

Кайбияйнен Л. К., Хари П. Сбалансированность системы водного транспорта у сосны обыкновенной. I. Пути движения влаги в ксилеме // Лесоведение. 1985. № 5. С. 23–28 [Kaybiyaynen L. K., Khari P. Sbalansirovannost’ sistemy vodnogo transporta u sosny obyknovennoy. I. Puti dvizheniya vlagi v ksileme (The balance of water transport system in Scots pine. I. Moisture paths in xylem) // Lesovedenie (For. Sci.). 1985. N. 5. P. 23–28 (in Russian with English abstract)].

Судачкова Н. Е., Милютина И. Л., Романова Л. И., Семенова Г. П. Влияние низкой температуры почвы на морфогенез вегетативных органов Pinus sylvestris (Pinaceae) // Бот. журн. 2005. Т. 90. № 9. С. 1436–1444 [Sudachkova N. E., Milyutina I. L., Romanova L. I., Semenova G. P. Vliyanie nizkoy temperatury pochvy na morfogenez vegetativnykh organov Pinus sylvestris (Pinaceae) (Influence of low soil temperature on the morphogenesis of vegetative organs Pinus sylvestris (Pinaceae)) // Bot. zhurn. (Bot. J.). 2005. V. 90. N. 9. P. 1436–1444 (in Russian with English abstract)].

Тюкавина О. Н., Евдокимов В. Н. Корневая система сосны обыкновенной в условиях северотаежной зоны // ИВУЗ. Лесн. журн. 2016. № 1. C. 55–65 [Tyukavina O. N., Evdokimov V. N. Kornevaya sistema sosny obyknovennoy v usloviyakh severotaezhnoy zony (Root system of Scots pine in the north taiga zone) // IVUZ. Lesn. zhurn. (For. J.). 2016. N. 1. P. 55–65 (in Russian with English abstract)].

Чиндяев А. С. Гидролесомелиоративные стационары в Уральском учебно-опытном лесхозе УГЛТУ. Екатеринбург: УГЛТУ, 2008. 80 с. [Chindyaev A. S. Gidrolesomeliorativnye statsionary v Uralskom uchebno-opytnom leskhoze UGLTU (Hydroforestry platforms in the Ural educational and experimental forestry department of the Ural State Forest Engineering University). Yekaterinburg: UGLTU (Ural St. For. Engineer. Univ.), 2008. 80 p. (in Russian)].

Шавнин С. А., Овчинников И. С., Голиков Д. Ю., Монтиле А. А., Галако В. А., Власенко В. Э. Явление поворота ствола в процессе роста у древесных растений (на примере Pinus sylvestris L. и Picea obovata Ldb.) // Сиб. экол. журн. 2018. Т. 25. № 1. С. 89–97 [Shavnin S. A., Ovchinnikov I. S., Golikov D. Yu., Montile A. A., Galako V. A., Vlasenko V. E. Yavlenie povorota stvola v protsesse rosta u drevesnykh rasteniy (na primere Pinus sylvestris L. i Picea obovata Ldb.) (Phenomenon og tree stem rotation during growth process of woody plants (based on the example of Pinus sylvestris L. and Picea obovata Ldb.)) // Sib. Ecol. J. 2018. V. 25. N. 1. P. 72–78 (in Russian with English abstract)].

Шиятов С. Г., Ваганов Е. А., Кирдянов А. В., Круглов В. Б., Мазепа В. С., Наурзбаев М. М., Хантемиров Р. М. Методы дендрохронологии. Часть I. Основы дендрохронологии. Сбор и получение древесно-кольцевой информации: учеб.-метод. пособие. Красноярск: КрасГУ, 2000. 80 с. [Shiyatov S. G., Vaganov E. A., Kirdyanov A. V., Kruglov V. B., Mazepa V. S., Naurzbaev M. M., Khantemirov R. M. Metody dendrokhronologii. Chast’ I. Osnovy dendrokhronologii. Sbor i poluchenie drevesno-koltsevoy informatsii: ucheb.-metod. posobie (Dendrochronology methods. Part I. Fundamentals of dendrochronology. Collecting and obtaining tree-ring information: tutorial). Krasnoyarsk: KrasGU (Krasnoyarsk St. Univ.), 2000. 80 p. (in Russian)].

Alia R., Gil L., Pardos J. A. Perfomance of 43 Pinus pinaster Ait. provenances on 5 locations in Central Spain // Silvae Gen. 1995. V. 44. Iss. 2–3. P. 75–81.

Balneaves J. M., De la Mare P. J. Root patterns of Pinus radiata on five ripping treatments in a Canterbury forest // New Zealand J. For. Sci. 1989. V. 19. N. 1. P. 29–40.

Blaise F., Fourcand T., Stokes A., Reffye P. de. A model simulating interactions between plant shoot and root architecture in non-homogeneous environment // The supporting roots of trees and woody plants: Form, function and physiology / A. Stokes (Ed.). Netherlands: Kluwer Acad. Publ., 2000. P. 195–207.

Cermak J., Kucera J. Scaling up transpiration data between trees, stands and watersheds // Silva Karelica. 1990. Iss. 15. P. 101–120.

Coutts M. P. Root architecture and tree stability // Plant & Soil. 1983. V. 71. Iss. 1–3. P. 171–188.

Coutts M. P., Nielsen C. C., Nicoll B. C. The development of symmetry, rigidity and anchorage in the structural root system of conifers // The supporting roots of trees and woody plants: Form, function and physiology / A. Stokes (Ed.). Netherlands: Kluwer Acad. Publ., 2000. P. 3–17.

Coutts M. P., Walker C., Burnand A. C. Effects of establishment method on root form of lodgepole pine and Sitka spruce and on the production of adventitious roots // Forestry. 1990. V. 63. Iss. 2. P. 143–159.

Danjon F., Khuder H., Stokes A. Deep phenotyping of coarse root architecture in R. pseudoacacia reveals that tree root system plasticity is confined within its architectural model // PLos One. 2013. V. 8. Iss. 12. e 83548.

Fournier M., Bailléres H., Chanson B. Tree biomechanics: growth, cumulative prestresses and reorientations // Biomimetics. 1994. V. 2. N. 3. P. 229–251.

Garrido F., Martin R. S., Lario F. J., Sierra-de-Grado R. Root structure and biomass partitioning in tilted plants from twisted- and straight-stemmed populations of Pinus pinaster Ait. // Trees. 2015. V. 29. Iss. 3. P. 759–774.

Harris J. M. Spiral grain and wave phenomena in wood formation. Springer-Verlag, Berlin, Heidelberg, 1989. 215 p.

Henderson R., Ford E. D., Renshaw E., Deans J. D. Morphology of the structural root system of Sitka spruce. I. Analysis and quantitative description // Forestry. 1983. V. 56. Iss. 2. P. 121–135.

Lehnebach R., Beyer R., Letort V., Heuret P. The pipe model theory half a century on: a review // Ann. Bot. 2018. V. 121. Iss. 5. P. 773–795.

Matthes U., Kelly P. E., Ryan C. E., Larson D. W. The formation and possible ecological function of stem strips in Thuja occidentalis // Int. J. Plant Sci. 2002. V. 163. N. 6. P. 949–958.

Mellerowicz E. J., Baucher M., Sundberg B., Boerjan W. Unraveling cell wall formation in the woody dicot stem // Plant Mol. Biol. 2001. V. 47. Iss. 1. P. 239–274.

Nadezdina N. Integration of water transport pathways in a maple tree: responses of sap flow to branch severing // Ann. For. Sci. 2010. V. 67. Iss. 1. P. 107.

Nadezdina N., Cermak J. Responses of sap flow rate along tree stem and coarse root radii to changes of water supply // The supporting roots of trees and woody plants: Form, function and physiology. Developments in plant and soil sciences / A. Stokes (Ed.). V. 87. Springer, Dordrecht, 2000. P. 227–238.

Nadezdina N., Cermak J. Instrumental methods for studies of structure and function of root systems in large trees // J. Exp. Bot. 2003. V. 54. Iss. 387. P. 1511–1521.

Nicoll B. C., Easton E. P., Milner A. D., Walker C., Coutts M. P. Wind stability factors in tree selection: distribution of biomass within root systems of Sitka spruce clones // Wind and Trees / M. P. Coutts, J. Grace (Eds.). Cambridge, UK: Cambridge Univ. Press, 1995. P. 276–292.

Richter Ch. Wood characteristics: description, causes, prevention, impact on use and technological adaptation. Basel: Springer Int. Publ., 2015. 222 p.

Richter G. L., Monshausen G. B., Krol A., Gilroy S. Mechanical stimuli modulate lateral root organogenesis // Plant Physiol. 2009. V. 151. N. 4. P. 1855–1866.

Rinn F. TSAP version 3.5. Reference manual. Computer program for tree ring analysis and presentation. Heidelberg, 1996.

Shavnin S. A., Ovchinnikov I. S., Golikov D. Yu., Montile A. A., Galako V. A., Vlasenko V. E. Phenomenon of trunk twist during the growth of woody plants (using the example of Pinus sylvestris L. and Picea obovata Ldb.)) // Contemp. Probl. Ecol. 2018. V. 11. N. 1. P. 72–78 (Original Rus. text © S. A. Shavnin, I. S. Ovchinnikov, D. Yu. Golikov, A. A. Montile, V. A. Galako, V. E. Vlasenko, 2018, publ. in Sib. Ekol. Zhurn. 2018. N. 1. P. 89–97).

Shinozaki K., Yoda K., Hozumi K., Kira T. A quantitative analysis of plant from: the pipe model theory. I. Basic analyses // Jap. J. Ecol. 1964a. V. 14. Iss. 3. P. 97–105.

Shinozaki K., Yoda K., Hozumi K., Kira T. A quantitative analysis of plant form: the pipe model theory. II. Further evidence of the theory and its application in forest ecology // Jap. J. Ecol. 1964b. V. 14. Iss. 4. P. 133–139.

StatSoft Inc., 2007.

Stokes A., Ball J., Fitter A. H., Brain P. Coutts M. P. An experimental investigation of the resistance of model root systems to uprooting // Ann. Bot. 1996. V. 78. Iss. 4. P. 415–421.

Stokes A., Mattheck C. Variation of wood strength in tree roots // J. Exp. Bot. 1996. V. 47. N. 5. P. 693–699.

Venturas M. D., Sperry J. S., Hacke U. G. Plant xylem hydraulics: What we understand, current research, and future challenges // J. Integrat. Plant Biol. 2017. V. 59. N. 6. P. 356–389.

Zimmermann M. H. Xylem structure and the ascent of sap. Springer-Verlag, Berlin, Heidelberg, 1983. 146 p.

Return to list