RU EN

Page menu:

Usoltsev V. A. Grafting of Tree Root Systems: Ecology, Biology, Modeling

Authors:
Keywords:
grafting of tree roots, biology and ecology of grafting, the movement of substances through grafting, live stumps, models of the functioning of grafting

Abstract

UDC 630*52:630*174.754

How to cite: Usoltsev V. A. Grafting of tree root systems: ecology, biology, modeling // Sibirskij Lesnoj Zurnal (Sib. J. For. Sci.). 2025. N. 2. P. … (in Russian with English abstract and references).

DOI: 10.15372/SJFS20250202

EDN: …

© Usoltsev V. A., 2025

The competition of trees for light, moisture and nutrients is usually considered as the main factor of interaction between trees, but this idea is questioned by examples of cooperation or cooperation through natural root grafting. In connection with the discussion of the phenomenon of plant root grafting, the most important question in biology about the relationship between individual species and individuals within a species has been developed. The importance of root grafting lies in its ability to influence the physiology and ecology of grafted trees, however, the processes contributing to the formation of root grafting, the factors involved and their effects are unknown. The question of whether the root grafting is accidental or a natural phenomenon is still controversial. The effect of live stumps on a growing tree remains uncertain. It is known that root grafting provides increased mechanical stability of trees in their resistance to wind and is associated with factors such as variability in root morphology, soil structure and moisture, as well as the degree of mutual root overlap. The frequency of root grafting increases both with the age of the stand and with its density. Pathogens, minerals, carbohydrates, hormones, herbicides, microorganisms and water flow through root grafting, but these processes actually have no quantitative basis. Modeling of water flows between grafted trees in mangrove forests at the quantitative level showed that there is no water exchange between trees of the same size or there is an insignificant amount; water movement occurs from the dominant tree to the oppressed one; water movement occurs from a tree growing in humid conditions to a tree growing in non-scarce conditions, and the amount of water received, compared to its own consumption, it is higher if the partner tree is larger. A quantitative approach to assessing the biological and ecological role of root grafting lays the foundation for understanding their impact on the formation and productivity of a stand.  

Article


СПИСОК ЛИТЕРАТУРЫ (REFERENCES)

Арнольд Ф. К. Русский лес. Т. II. Ч. 1. СПб.: Изд. А. Ф. Маркса, 1898. 705 с. [Arnold F. K. Russkiy les (Russian forest) V. II. Part 1. St. Petersburg: Izd. A. F. Marks (A. F. Marks Publ.), 1898. 705 p. (in Russian)].

Бескаравайный М. М. Срастание корней у некоторых древесных пород в Камышинском районе // Агробиология. 1955. № 3. С. 78–89 [Beskaravayny M. M. Srastanie korney u nekotorykh drevesnykh porod v Kamyshinskom rayone (Root grafting of some tree species in the Kamyshinsky district) // Agrobiologiya (Agrobiology). 1955. N. 3. P. 78–89 (in Russian)].

Бондорина И. А. Диагностика совместимости компонентов прививки // Науч. журн. КубГАУ. 2011. № 71 (07). С. 1–13 [Bondorina I. A. Diagnostika sovmestimosti komponentov privivki (Diagnosis of compatibility of graft components) // Nauch. zhurn. KubGAU (Sci. J. Kuban St. Agr. Univ.). 2011. N. 71 (07). P. 1–13 (in Russian with English abstract)].

Вашкулат П. Н. О срастании многолетних растений // ИВУЗ. Лесн. журн. 1962. № 4. С. 16–17 [Vashkulat P. N. O srastanii mnogoletnikh rasteniy (On grafting of perennial plants). IVUZ. Lesn. zhurn. (For. J.). 1962. N. 4. P. 16–17 (in Russian with English abstract)].

Виноградов-Никитин П. З. Некоторые наблюдения над жизнью деревьев // Изв. Тифлис. гос. политех. ин-та. 1924. Вып. 1. С. 192–201 [Vinogradov-Nikitin P. Z. Nekotorye nablyudeniya nad zhizn’yu derev’ev (Some observations on the life of trees) // Izv. Tiflis. gos. politekh. in-ta (Proc. Tiflis St. Polytech. Inst.). 1924. Iss. 1. P. 192–201 (in Russian)].

Гордеев А. В. Живые пни // Природа. 1953. № 7. С. 114–115 [Gordeev A. V. Zhivye pni (Living stumps) // Priroda (Nature). 1953. N. 7. P. 114–115 (in Russian)].

Гурова Ю. С. Особенности формирования окислительно-восстановительных условий на границе «вода-донные отложения» в прибрежных районах российского сектора Азово-Черноморского бассейна: автореф. дис. ... канд. геогр. наук: 1.6.17. Севастополь: Морской гидрофиз. ин-т РАН, 2023. 24 с. [Gurova Yu. S. Osobennosti formirovaniya okislitel’no-vosstanovitel’nykh usloviy na granitse «voda-donnye otlozheniya» v pribrezhnykh rayonakh rossiyskogo sektora Azovo-Chernomorskogo basseyna: avtoref. dis. kand. geogr. nauk: 1.6.17 (Features of the formation of redox conditions at the boundary «water-bottom sediments» in the coastal areas of the Russian sector of the Azov-Black Sea basin: Cand. Geogr. Sci. (PhD) thesis: Oceanology). Sevastopol: Morskoy gidrofiz. in-t RAN (Marine Hydrophys. Inst. Rus. Acad. Sci.), 2023. 24 p. (in Russian)].

Ивченко Н. И. Взаимоотношения пород в насаждениях, созданных гнездовым посевом // Лесн. хоз-во. 1961. № 9. С. 36–41 [Ivchenko N. I. Vzaimootnosheniya porod v nasazhdeniyakh, sozdannykh gnezdovym posevom (The relationships of species in the stands created by nest sowing) // Lesn. khoz-vo (Forestry). 1961. N. 9. P. 36–41 (in Russian)].

Живые пни, 2024 [Zhivye pni (Living stumps), 2024 (in Russian). https://ru.pinterest.com/pin/524950900317129484/

Казак Е. С., Корзун А. В., Ахманов Г. Г., Бакай Е. А. Геохимия поровых вод донных отложений в северо-восточной части шельфа Баренцева моря // Вестн. Моск. ун-та. Сер. 4. Геол. 2021. № 5. С. 39–53 [Kazak E. S., Korzun A.V., Akhmanov G. G., Bakay E. A. Geokhimiya porovykh vod donnykh otlozheniy v severo-vostochnoy chasti shel’fa Barentseva morya (Geochemistry of porewaters of bottom sediments in the northeastern part of the Barents Sea shelf) // Vestn. Mosk. un-ta. Ser. 4. Geol. (Bull. Moscow Univ. Ser. 4. Geol.). 2021. N. 5. P. 39–53 (in Russian with English abstract)].

Калинин М. И. Корневедение. М.: Экология, 1991. 173 с. [Kalinin M. I. Kornevedenie (Root science). Moscow: Ekologiya (Ecology), 1991. 173 p. (in Russian)].

Колтунова А. И. О формировании горизонтальной структуры и срастании корневых систем в древостоях сосны // Эко-потенциал. 2013. № 3–4. С. 136–142 [Koltunova A. I. O formirovanii gorizontal’noy struktury i srastanii kornevykh system v drevostoyakh sosny (On the formation of a horizontal structure and the grafting of root systems in pine stands) // Eco-potential. 2013. N. 3–4. P. 136–142 (in Russian with English abstract)].

Крамер П., Козловский Т. Т. Физиология древесных растений. М.: Лесн. пром-сть, 1983. 464 с. [Kramer P., Kozlovskiy T. T. Fiziologiya drevesnykh rasteniy (Physiology of woody plants). Moscow: Lesn. prom-st’ (For. Industry), 1983. 464 p. (in Russian)].

Лир Х., Польстер Г., Фидлер Г.-И. Физиология древесных растений. М.: Лесн. пром-сть, 1974. 424 с. [Lyr H., Polster G., Fiedler G.-I. Fiziologiya drevesnykh rasteniy (Physiology of woody plants). Moscow: Lesn. prom-st’ (For. Industry), 1974. 424 p. (in Russian)].

Любич Ф. П. Взаимоотношение корневых систем особей дуба черешчатого и других древесных пород при гнездовом способе культуры // Докл. АН СССР. 1954. Т. 97. № 3. С. 535–538 [Lyubich F. P. Vzaimootnoshenie kornevykh sistem osobey duba chereshchatogo i drugikh drevesnykh porod pri gnezdovom sposobe kul’tury (The relationship of the root systems of individuals of pedunculate oak and other tree species in the nest method of planting) // Dokl. AN SSSR (Proc. USSR Acad. Sci.). 1954. V. 97. Iss. 3. P. 535–538 (in Russian with English abstract)].

Макаренко А. А. О срастании корневых систем в сосновых насаждениях Казахского мелкосопочника // Агробиология. 1962. № 6. С. 939–941 [Makarenko A. A. O srastanii kornevykh sistem v sosnovykh nasazhdeniyakh Kazakhskogo melkosopochnika (On the grafting of root systems in the pine forests of the Kazakh small hils) // Agrobiologiya (Agrobiology). 1962. N. 6. P. 939–941 (in Russian)].

Макаренко A. A. Срастание корневых систем сосны в сухих борах Северного Казахстана // Агробиология. 1964. № 4. С. 623–624 [Makarenko A. A. Srastanie kornevykh system sosny v sukhikh borakh Severnogo Kazakhstana (Grafting of pine root systems in dry forests of Northern Kazakhstan) // Agrobiologiya (Agrobiology). 1964. N. 4. P. 623–624 (in Russian)].

Подзоров Н. В. Срастание корневых систем сосны в географических культурах В. Д. Огиевского // Лесн. хоз-во. 1963. № 10. С. 29–30 [Podzorov N. V. Srastanie kornevykh system sosny v geograficheskikh kul’turakh V. D. Ogievskogo (Grafting of pine root systems in geographical crops of V. D. Ogievsky) // Lesn. khoz-vo (Forestry). 1963. N. 10. P. 29–30 (in Russian)].

Розанов А. Г., Волков И. И. Донные осадки Кандалакшского залива Белого моря: марганцевый феномен // Геохимия. 2009. № 10. С. 1067–1085 [Rozanov A. G., Volkov I. I. Donnye osadki Kandalakshskogo zaliva Belogo morya: margantsevy fenomen (Bottom sediments of Kandalaksha Bay in the White Sea: The phenomenon of Mn) // Geochimiya (Geochemistry). 2009. N. 10. P. 1067–1085 (in Russian with English abstract)].

Савельева Л. С. Срастание корневых систем древесных пород. М.: Лесн. пром-сть, 1969. 72 с. [Savel’eva L. S. Srastanie kornevykh system drevesnykh porod (Grafting of root systems of tree species). Moscow: Lesn. prom-st’ (For. Industry), 1969. 72 p. (in Russian)].

Санников С. Н., Санникова Н. С. Лес как подземно-сомкнутая дендроценоэкосистема // Сиб. лесн. журн. 2014. № 1. С. 25–34 [Sannikov S. N., Sannikova N. S. Les kak podzemno-somknutaya dendrotsenoekosistema (Forest as an underground-closed dendrocenoecosystem) // Sib. lesn. zurn. (Sib. J. For. Sci.). 2014. N. 1. P. 25–34 (in Russian with English abstract)].

Титов Е. В. Кедр. Царь сибирской тайги. М: Колос, 2007. 152 с. [Titov E. V. Kedr. Tsar’ sibirskoy taygi (Siberian stone pine. The king of the Siberian taiga). Moscow: Kolos, 2007. 152 p. (in Russian)].

Фукарек Ф., Мюллер Г., Шустер Р. Растительный мир Земли: в 2-х т.; Т. 1. М.: Мир, 1982. 136 с. (пер. с нем.) [Fukarek F., Müller G., Schuster R. Rastitel’ny mir Zemli: v dvukh t. T. 1 (The flora of the Earth: in 2 volumes; vol. 1.) Moscow: Mir, 1982. 136 p. (trans. from German) (in Russian)].

Шевелев К. Где море встречается с лесом // Как и почему? 2020 [Shevelev K. Gde more vstrechaetsya s lesom (Where the sea meets the forest) // Kak i pochemu? (How and why?). 2020 (in Russian). https://kipmu.ru/gde-more-vstrechaetsya-s-lesom/

Юновидов А. П. Растущие сосновые пни // Лесн. хоз-во и лесоэкспл. 1935. № 12. С. 172 [Yunovidov A. P. Rastushchie sosnovye pni (Growing pine stumps) // Lesn. khoz-vo i lesoekspl. (For. and For Expl.). 1935. N. 12. p. 172 (in Russian)].

Янушко А. Д. Естественное срастание корневых систем и зарастание пней в рядовых культурах лиственницы // Сб. раб. по лесн. хоз-ву. Вып. 1. Минск: Звязда, 1958. С. 34–37 [Yanushko A. D. Estestvennoe srastanie kornevykh system i zarastanie pney v ryadovykh kul’turakh listvennitsy (Natural grafting of root systems and overgrowth of stumps in row larch crops) // Sb. rab. po lesn. khoz-vu. Iss. 1. Minsk: Zvyazda, 1958. P. 34–37 (in Russian)].

Ярославцев Г. Д. Срастание корней в почвозащитных насаждениях на горных склонах // Вестн. с.-х. науки. 1964. № 1. С. 99–108 [Yaroslavtsev G. D. Srastanie korney v pochvozashchitnykh nasazhdeniyakh na gornykh sklonakh (The grafting of roots in soil-protective forests on mountain slopes) // Vestn. s.-kh. nauki (Bull. Agr. Sci.). 1964. N. 1. P. 99–108 (in Russian)].

Adonsou K. E., DesRochers A., Tremblay F., Thomas B. R., Isabel N. The clonal root system of balsam poplar in upland sites of Quebec and Alberta // Ecol. Evol. 2016a. V. 6. Iss.19. P. 6846–6854.

Adonsou K. E., Drobyshev I., DesRochers A., Tremblay F. Root connections affect radial growth of balsam poplar trees // Trees. 2016b. V. 30. Iss. 5. P. 1775–1783.

Appel D. N. Identification and control of oak wilt in Texas urban forests // J. Arb. 1994. V. 20. Iss. 5. P. 250–258.

Armson K. A., Van den Driessche R. Natural root grafts in red pine (Pinus resinosa Ait.) // For. Chron. 1959. V. 35. N. 3. P. 232–241.

Bader M. K., Leuzinger S. Hydraulic coupling of a leafless kauri tree remnant to conspecific hosts // iScience. 2019. V. 19. P. 1238–1247.

Ball M. C., Farquhar G. D. Photosynthetic and stomatal responses of two mangrove species, Aegiceras corniculatum and Avicennia marina, to long term salinity and humidity conditions // Plant Physiol. 1984. V. 74. Iss. 1. P. 1–6.

Baret M., DesRochers A. Root connections can trigger physiological responses to defoliation in nondefoliated aspen suckers // Botany. 2011. V. 89. N. 11. P. 753–761.

Baric S., Kerschbamer C., Vigl J., Dalla Via J. Translocation of apple proliferation phytoplasma via natural root grafts – a case study // Europ. J. Plant Pathol. 2008. V. 121. Iss. 2. P. 207–211.

Basnet K., Scatena F. N., Likens G. E., Lugo A. E. Ecological consequences of root grafting in tabonuco (Dacryodes excelsa) trees in the Luquillo experimental forest, Puerto Rico // Biotropica. 1993. V. 25. N. 1. P. 28–35.

Bathmann J., Peters R., Naumov D., Fischer T., Berger U., Walther M. The MANgrove–GroundwAter feedback model (MANGA) – describing belowground competition based on first principles // Ecol. Model. 2020. V. 420. Article number 108973.

Bathmann J., Peters R., Reef R., Berger U., Walther M., Lovelock C. E. Modelling mangrove forest structure and species composition over tidal inundation gradients: the feedback between plant water use and porewater salinity in an arid mangrove ecosystem // Agr. For. Meteorol. 2021. V. 308–309. Article number 108547.

Bechtold W. A. Crown position and light exposure classification – an alternative to field-assigned crown class // North. J. Appl. For. 2003. V. 20. Iss. 4. P. 154–160.

Berntson G. M., Wayne P. M. Characterizing the size dependence of resource acquisition within crowded plant populations // Ecology. 2000. V. 81. Iss. 4. P. 1072–1085.

Bertness M. D., Callaway R. Positive interactions in communities // Trends Ecol. Evol. 1994. V. 9. Iss. 5. P. 191–193.

Blaedow R. A., Juzwik J. Spatial and temporal distribution of Ceratocystis fagacearum in roots and root grafts of oak wilt affected red oaks // Arb. Urban For. 2010. V. 36. Iss. 1. P. 28–34.

Bormann F. H. Intraspecific root grafting and the survival of eastern white pine stumps // For. Sci. 1961. V. 7. Iss. 3. P. 247–256.

Bormann F. H. Root grafting and non-competitive relationships between trees In: Tree growth / T. T. Kozlowski (Ed.). New York: Ronald Press Co., 1962. P. 237–246.

Bormann F. H. The structure, function, and ecological significance of root grafts in Pinus strobus L. // Ecol. Monogr. 1966. V. 36. N. 1. P. 1–26.

Bormann F. H., Graham B. F. The occurrence of natural root grafting in Eastern white pine, Pinus strobus L., and its ecological implications // Ecology. 1959. V. 40. N. 4. P. 677–691.

Bormann F. H., Graham B. F. Translocations of silvicides through root grafts // J. For. 1960. V. 58. N. 5. Р. 402–403.

Boys J., Cherry M., Dayanandan S. Microsatellite analysis reveals genetically distinct populations of red pine (Pinus resinosa, Pinaceae) // Am. J. Bot. 2005. V. 92. Iss. 5. P. 833–841.

Burgess S. S. O., Adams M. A., Turner N. C., Ong C. K. The redistribution of soil water by tree root systems // Oecologia. 1998. V. 115. Iss. 3. P. 306–311.

Callaway R. M. , Brooker R. W., Choler P., Kikvidze Z., Lortiek C. J., Michalet R., Paolini L., Pugnaire F. I., Newingham B., Aschehoug E. T., Armas C., Kikodze D., Cook B. J. Positive interactions among alpine plants increase with stress // Nature. 2002. V. 417. Iss. 6891. P. 844–848.

Darikova J. A., Savva Y. V., Vaganov E. A., Grachev A. M., Kuznetsova G. V. Grafts of woody plants and the problem of incompatibility between scion and rootstock (a review) // J. Sib. Fed. Univ. Biol. 2011. V. 4. Iss. 1. P. 54–63.

De La Rue C. Root grafting in trees // Am. J. Bot. 1934. V. 21. P. 121–126.

Deslippe J. R., Hartmann M., Grayston S. J., Simard S. W., Mohn W. W. Stable isotope probing implicates a species of Cortinarius in carbon transfer through ectomycorrhizal fungal mycelial networks in Arctic tundra // New Phytol. 2016. V. 210. Iss. 2. P. 383–390.

Desrochers A., Lieffers V. J. The coarse-root system of mature Populus tremuloides in declining stands in Alberta, Canada // J. Veg. Sci. 2001. V. 12. Iss. 3. P. 355–360.

Dosen R. C., Iyer J. G. Effect of grafted roots of stumps on the growth of a thinned red pine plantation // Tree Plant. Not. 1979. V. 30. P. 19–21.

Eis S. Root grafts and their silvicultural implications // Can. J. For. Res. 1972. V. 2. N. 2. P. 111–120.

Epstein A. H. Root graft transmission of tree pathogens // Ann. Rev. Phytopath. 1978. V. 16. P. 181–192.

Erb M., Lenk C., Degenhardt J., Turlings T. C. J. The underestimated role of roots in defense against leaf attackers // Trends Plant. Sci. 2009. V. 14. Iss. 12. P. 653–659.

Feng M., Augstein F., Kareem A., Melnyk C. W. Plant grafting: Molecular mechanisms and applications // Mol. Plant. 2024. V. 17. Iss. 1. P. 75–91.

Fraser E. C., Lieffers V. J., Landhäusser S. M. Age, stand density, and tree size as factors in root and basal grafting of lodgepole pine // Can. J. Bot. 2005. V. 83. N. 8. P. 983–988.

Fraser E. C., Lieffers V. J., Landhäusser S. M. Carbohydrate transfer through root grafts to support shaded trees // Tree Physiol. 2006. V. 26. Iss. 8. P. 1019–1023.

Fraser E. C., Lieffers V. J., Landhäusser S. M. The persistence and function of living roots on lodgepole pine snags and stumps grafted to living trees // Ann. For. Sci. 2007. V. 64. P. 31–36.

Fuller G. D. Living stumps // Bot. Gaz. 1921. V. 71. Iss. 2. P. 160.

Gaspard D. T., DesRochers A. Natural root grafting in hybrid poplar clones // Trees. 2020. V. 34. Iss. 4. P. 881–890.

Goldschmidt E. E. Plant grafting: new mechanisms, evolutionary implications // Front. Plant Sci. 2014. V. 5. Article number 727.

Göppert H. R. Beobachtungen über das sogenannte Ueberwallen der Tannenstöcke. Bonn: Henry & Cohen, 1842. 26 p.

Gordon D. E. The importance of root grafting in the spread of phytophthora root rot in an immature stand of Port-Orford-cedar. MSc Thesis. Portland: Oregon St. Univ., 1974. 116 р.

Graham B. F., Bormann F. H. Natural root grafts // Bot. Rev. 1966. V. 32. Iss. 3. P. 255–292.

Greenidge K. N. H. Studies in the physiology of forest trees. III. The effect of drastic interruption of conducting tissues on moisture movement // Am. J. Bot. 1955. V. 42. Iss. 7. P. 582–587.

Grimm V., Berger U. Robustness analysis: deconstructing computational models for ecological theory and applications // Ecol. Model. 2016. V. 326. P. 162–167.

Hamilton W. D. The genetical evolution of social behavior (I, II) // J. Theor. Biol. 1964. V. 7. Iss. 1. P. 17–52.

Hao G.-Y., Jones T. J., Luton C., Zhang Y.-J., Manzane E., Scholz F. G., Bucci S. J., Cao K.-F., Goldstein G. Hydraulic redistribution in dwarf Rhizophora mangle trees driven by interstitial soil water salinity gradients: impacts on hydraulic architecture and gas exchange // Tree Physiol. 2009. V. 29. Iss. 5. P. 697–705.

Harris S. A., Robinson J. P., Juniper B. E. Genetic clues to the origin of the apple // Trends Gen. 2002. V. 18. Iss. 8. P. 426–430.

Hartig Th. Literärische Berichte (Beobachtungen über das sogenannte Ȕberwallen des Tannenstöcke für Botaniker und Forstmänner von H. R. Göppert. Bonn: Henry und Cohen, 1842. 26 p.) // Allg. Forst. Jagt. Ztg. 1844. V. 13. P. 96–99.

Hartmann H. T., Kester D. E., Davies F. T., Geneve R. L. Plant propagation: principles and practices. Eighth ed. Harlow: Pearson Educ. Ltd., 2014. 922 p.

Hinckley T. M., Lassoie J. P., Running S. W. Temporal and spatial variations in the water status of forest trees // For. Sci. Monogr. 1978. V. 20. P. 1–72.

Holmsgaard E., Sсhаrff O. Living stumps in Norway spruce stands // The Danish For. Exp. St. Rep. with summaries in English. 1963. V. 28. Iss. 2. P. 98–150 (in Danish).

Hubbell S. P. Tree dispersion, abundance, and diversity in a tropical dry forest // Science. 1979. V. 203. Iss. 4387. P. 1299–1309.

Jelínková H., Tremblay F., DesRochers A. Molecular and dendrochronological analysis of natural root grafting in Populus tremuloides (Salicaceae) // Am. J. Bot. 2009. V. 96. Iss. 8. P. 1500–1505.

Jelínková H., Tremblay F., Desrochers A. Herbivore-simulated induction of defenses in clonal networks of trembling aspen (Populus tremuloides) // Tree Physiol. 2012. Vol. 32. Iss. 11. P. 1348–1356.

Jones T. W., Bretz T. W. Experimental oak wilt control in Missouri // Res. Bull. 1958. V. 657. Р. 1–12 (A Rep. School For. Res. Project 52, Oak Wilt).

Juzwik J., O’Brien J., Evenson C., Castillo P., Mahal G. Controlling spread of the oak wilt pathogen (Ceratocystis fagaceorum) in a Minnesota urban forest park reserve // Arb. Urban For. 2010. V. 36. Iss. 4. P. 171–178.

Juniper B. E., Maberly J. The story of the apple. Portland, OR: Timber Press, 2006. 219 p.

Keeley J. Population variation in root grafting and a hypothesis // Oikos. 1988. V. 52. N. 3. P. 364–366.

Klein T., Siegwolf R. T., Kröner C. Belowground carbon trade among tall trees in a temperate forest // Science. 2016. V. 352. Iss. 6283. P. 342–344.

Knox R. G., Peet R. K., Christensen N. L. Population dynamics in loblolly pine stands: changes in skewness and size inequality // Ecology. 1989. V. 70. Iss. 4. P. 1153–1167.

Kobayashi K., Suzuki M., Sasaya S. Grafting robot // J. Robot. Mechatron. 1999. V. 11. Iss. 3. P. 213–219.

Kobendsa R. Dalsze studia nad zarastaniem ściętych pni drzew (Further research on the cicatrizing of cut-down tree stumps) // Rocznik Dendrol. 1955. V. 10. P. 1–29 (in Polish with English summary).

Kozlowski T. T. Soil moisture and absorption of water by tree roots // J. Arb. 1987. V. 13. Iss. 2. P. 39–46.

Külla T., Lõhmus K. Influence of cultivation method on root grafting in Norway spruce (Picea abies (L.) Karst.) // Plant Soil. 1999. V. 217. P. 91–100.

Kummel M. Modeling intraspecific root grafting in trees: a theoretical perspective on predicting the frequency and effects of root grafting. Senior Thesis. Princeton Univ., 2023.

Kuntz J. E., Riker A. J. Root grafts as a possible means for local transmission of oak wilt // Phytopath. 1950. V. 40. Iss. 1. P. 16–17.

Kuntz J. E., Riker A. J. The use of radioactive isotopes to ascertain the role of root grafting in the translocation of water, nutrients, and disease-inducing organisms among forest trees In: Proc. Int. Conf. Peaceful Uses Atom. Energy, Geneva, Switzerland, 1–13 Sept., 1956. Geneva, Switzerland: United Nations, 1956. P. 144–148.

Küster E. Ueber Stammverwachsungen // Jahrb. Wiss. Bot. 1899. V. 33. P. 487–512.

La Rue C. Root grafting in trees // Am. J. Bot. 1934. V. 21. P. 121–126.

Lanner R. M. Living stumps in the Sierra Nevada // Ecology. 1961. V. 42. Iss. 1. P. 170–173.

Lev-Yadun S., Sprugel D. Why should trees have natural root grafts // Tree Physiol. 2011. V. 31. Iss. 6. P. 575–578.

Liphschitz N., Bonneh O., Mendel Z. Living stumps – circumstantial evidence for root grafting in Pinus halepensis and P. brutia plantations in Israel // Isr. J. Bot. 1987. V. 36. Iss. 1. P. 41–43.

Loehle C. Tree life history strategies: the role of defenses // Can. J. For. Res. 1988. V. 18. N. 2. P. 209–222.

Loehle C., Jones R. H. Adaptive significance of root grafting in trees // Funct. Ecol. 1990. V. 4. N. 2. P. 268–271.

Loupit G., Cookson S. J. Identifying molecular markers of successful graft union formation and compatibility // Front. Plant Sci. 2020. V. 11. Article number 610352.

Loupit G., Brocard L., Ollat N., Cookson S. J. Grafting in plants: recent discoveries and new applications // J. Exp. Bot. 2023. V. 74. Iss. 8. P. 2433–2447.

Mauro R. P., Perez-Alfocea F., Cookson S. J., Ollat N., Vitale A. (Eds.). Physiological and molecular aspects of plant rootstock-scion interactions. Lausanne: Front. Media SA, 2022. 334 p.

McIntire E. J. B., Fajardo A. Facilitation as a ubiquitous driver of biodiversity // New Phytol. 2014. V. 201. Iss. 2. P. 403–416.

Melcher P. J., Goldstein G., Meinzer F. C., Yount D. E., Jones T. J., Holbrook N. M., Huang C. X. Water relations of coastal and estuarine Rhizophora mangle: xylem pressure potential and dynamics of embolism formation // Oecologia. 2001. V. 126. Iss. 2. P. 182–192.

Melnyk C. W. Plant grafting: insights into tissue regeneration // Regeneration. 2017. V. 4. Iss. 1. P. 3–14.

Melnyk C. W., Gabel A., Hardcastle T. J., Robinson S., Miyashima S., Grosse I., Meyerowitz E. M. Transcriptome dynamics at Arabidopsis graft junctions reveal an inter tissue recognition mechanism that activates vascular regeneration // PNAS. 2018. V. 115. Article number 2447–2456.

Mudge K., Janick J., Scofield S., Goldschmidt E. E. A history of grafting // Hort. Rev. 2009. V. 35. P. 437–493.

Munns R., Tester M. Mechanisms of salinity tolerance // Ann. Rev. Plant Biol. 2008. V. 59. Iss. 1. P. 651–681.

Nanda A. K., Melnyk C. The role of plant hormones during grafting // J. Plant Res. 2018. V. 131. Iss. 1. P. 49–58.

Newins H. S. The natural root grafting of conifers // Soc. Amer. For. Proc. 1916. V. 11. P. 394–404.

Notaguchi M., Kurotani K.-I., Sato Y., Tabata R., Kawakatsu Y., Okayasu K., Sawai Y., Okada R., Asahina M., Ichihashi Y., Shirasu K., Suzuki T., Niwa M., Higashiyama T. Cell-cell adhesion in plant grafting is facilitated by b-1,4-glucanases // Science. 2020. V. 369. Iss. 6504. P. 698–702.

Oliveira R. S., Christoffersen B. O., V. Barros F. de, Teodoro G. S., Bittencourt P., Brum-Jr M. M., Viani R. A. G. Changing precipitation regimes and the water and carbon economies of trees // Theor. Exp. Plant Physiol. 2014. V. 26. P. 65–82.

Olmos-Ruiz R., Carvajal M. Nutrient passage in differentially grafted lemon trees // Biol. Life Sci. Forum. 2022. V. 11. Iss. 1. Article number 67.

O’Neal E. S., Davis D. D. Intraspecific root grafts and clonal growth within Ailanthus altissima stands influence Verticillium nonalfalfae transmission // Plant Disease. 2015. V. 99. N. 8. P. 1070–1077.

Peakall R., Smouse P. E. GenAlEx 6: Genetic analysis in Excel. Population genetics software for teaching and research // Mol. Ecol. Notes. 2006. V. 6. Iss. 1. P. 288–295.

Pease A. S. Notes on ancient grafting // Trans. Proc. Am. Philol. Ass. 1933. V. 64. P. 66–76.

Pemberton C. C. Living stumps of trees // Amer. For. 1920. V. 26. P. 614–616.

Peters R., Vovides A. G., Luna S., Grüters U., Berger U. Changes in allometric relations of mangrove trees due to resource availability – a new mechanistic modelling approach // Ecol. Model. 2014. V. 283. P. 53–61.

Peters R., Olagoke A., Berger U. A new mechanistic theory of self-thinning: adaptive behaviour of plants explains the shape and slope of self-thinning trajectories // Ecol. Model. 2018. V. 390. P. 1–9.

Peters R., Lovelock C., López-Portillo J., Bathmann J., Wimmler M.-C., Jiang J., Walther M., Berger U. Partial canopy loss of mangrove trees: mitigating water scarcity by physical adaptation and feedback on porewater salinity // Estuar. Coast. Shelf Sci. 2021. V. 248. Article number 106797.

Quer E., Helluy M., Baldy V., Desrochers A. Does natural root grafting make trees better competitors? // Oikos. 2022. V. 12. Article number e09666.

Quer E., Baldy V., DesRochers A. Ecological drivers of root grafting in balsam fir natural stands // Forest Ecol. Manag. 2020. V. 475. Article number 118388.

Rasool A., Mansoor S., Bhat K. M., Hassan G. I., Baba T. R., Alyemeni M. N., Alsahli A. A., El-Serehy H. A., Paray B. A., Ahmad P. Mechanisms underlying graft union formation and rootstock – scion interaction in horticultural plants // Front. Plant Sci. 2020. V. 11. Article number 590847.

R Core Team. R: A language and environment for statistical computing. Vienna: R Found. Stat. Comp., 2020. https://www.r-project.org/

Reynolds K. M., Bloomberg W. J. Estimating probability of inter-tree root contact in second-growth Douglas-fir // Can. J. For. Res. 1982. V. 12. N. 3. P. 493–498.

Rezakhaniha R., Agianniotis A., Schrauwen J. T. C., Griffa A., Sage D., Bouten C. V. C., van de Vosse F. N., Unser M., Stergiopulos N. Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy // Biomech. Model. Mechanobiol. 2012. V. 11. Iss. (3–4). P. 461–473.

Richards J. H., Caldwell M. M. Hydraulic lift: substantial nocturnal water transport between soil layers by Artemisia tridentata roots // Oecologia. 1987. V. 73. Iss. 4. P. 486–489.

Rossdeutsch L., Schreiner R. P., Skinkis P. A., Deluc L. Nitrate uptake and transport properties of two grapevine rootstocks with varying vigor // Front. Plant Sci. 2021. V. 11. Article number 608813.

Rozanov A. G., Volkov I. I. Bottom sediments of Kandalaksha Bay in the White Sea: The phenomenon of Mn // Geochem. Int. 2009. V. 47. N. 10. P. 1004–1020 (Original Rus. Text © A. G. Rozanov, I. I. Volkov, 2009, publ. in Geokhimiya. 2009. N. 10. P. 1067–1085).

Salomón R. L., Tarroux E., DesRochers A. Natural root grafting in Picea mariana to cope with spruce budworm outbreaks // Can. J. For. Res. 2016. V. 46. N. 8. P. 1059–1066.

Satoo T. Natural root grafting and growth of living stumps of Chamaecyparis obtusа // Miscellaneous Inf., the Univ. Tokyo For. 1964. V. 15. P. 54–60.

Schenk H. J. Root competition: beyond resource depletion // J. Ecol. 2006. V. 94. Iss. 4. P. 725–739.

Schreel J. D. M., Van de Wal B. A. E., Hervé-Fernandez P., Boeckx P., Steppe K. Hydraulic redistribution of foliar absorbed water causes turgor driven growth in mangrove seedlings // Plant Cell Environ. 2019. V. 42. Iss. 8. P. 2437–2447.

Schubert S. Pflanzenernährung: Grundwissen Bachelor. Stuttgart: Eugen Ulmer KG, 2011. 224 р.

Schultz R. P. Occurrence of stump callusing in second-growth Douglas fir (Pseudotsuga menziesii (Mirb.) Franco). MSc Thesis. Portland: Oregon St. Univ., 1963. 93 p.

Schultz R. P. Intraspecific root grafting in slash pine // Bot. Gaz. 1972. V. 133. Iss. 1. P. 26–29.

Schultz R. P., Woods F. W. The frequency and implications of intraspecific root-grafting in loblolly pine // For. Sci. 1967. V. 13. Iss. 3. P. 226–239.

Sharma A., Zheng B. Molecular responses during plant grafting and its regulation by auxins, cytokinins, and gibberellins // Biomolecules. 2019. V. 9. Iss. 9. Article number 397.

Shepperd W. D. Initial growth, development, and clonal dynamics of regenerated aspen in the Rocky Mountains. USDA For. Serv., Rocky Mountain For. Range Exp. St.; Res. Paper RM-312, 1993. 8 p.

Shinozaki K., Yoda K., Hozumi K., Kira T. A quantitative analysis of plant form – the pipe model theory II. Further evidence of the theory and its application in forest ecology // Jap. J. Ecol. 1964. V. 14. Iss. 4. P. 133–139.

Stokes A., Salin F., Kokutse A. D., Berthier S., Jeannin H., Mochan S., Dorren L., Kokutse N., Ghani M. A., Fourcaud T. Mechanical resistance of different tree species to rockfall in the French Alps // Plant Soil. 2005. V. 278. Iss. 1. P. 107–117

Stone E. L. The communal root system of red pine: growth of girdled trees // For. Sci. 1974. V. 20. Iss. 4. P. 294–305.

Stone J. E., Stone E. L. The communal root system of red pine: water conduction through root grafts // For. Sci. 1975. V. 21. Iss. 1. P. 255–261.

Tarroux E., DesRochers A. Frequency of root grafting in naturally and artificially regenerated stands of Pinus banksiana: influence of site characteristics // Can. J. For. Res. 2010. V. 40. N. 5. P. 861–871.

Tarroux E., DesRochers A. Effect of natural root grafting on growth response of jack pine (Pinus banksiana; Pinaceae) // Am. J. Bot. 2011. V. 98. Iss. 6. P. 967–974.

Tarroux E., DesRochers A., Krause C. Effect of natural root grafting on growth response of jack pine (Pinus banksiana) after commercial thinning // For. Ecol. Manag. 2010. V. 260. Iss. 4. P. 526–535.

Tarroux E., DesRochers A., Tremblay F. Molecular analysis of natural root grafting in jack pine (Pinus banksiana) trees: how does genetic proximity influence anastomosis occurrence? // Tree Genet. Genom. 2014. V. 10. P. 667–677.

Temeles E. J. The role of neighbours in territorial systems: when are they ‘dear enemies’? // Anim. Behav. 1994. V. 47. Iss. 2. P. 339–350.

Torres L. F., López de Andrade S. A., Mazzafera P. Split-root, grafting and girdling as experimental tools to study root-to shoot-to root signaling // Environ. Exp. Bot. 2021. V. 191. Article number 104631.

Vovides A.G., Vogt J., Kollert A., Berger U., Grueters U., Peters R., Lara-Dominguez A. L., Lopez-Portillo J. Morphological plasticity in mangrove trees: salinity-related changes in the allometry of Avicennia germinans // Trees. 2014. V. 28. Iss. 5. P. 1413–1425.

Vovides A. G., Marín-Castro B., Barradas G., Berger U., López-Portillo J. A simple and cost-effective method for cable root detection and extension measurement in estuary wetland forests // Estuar. Coast. Shelf Sci. 2016. V. 183. Part A. P. 117–122.

Vovides A. G., Wimmler M.-C., Schrewe F., Balke T., Zwanzig M., Piou C., Delay E., López-Portillo J., Berger U. Cooperative root graft networks benefit mangrove trees under stress // Commun. Biol. 2021. V. 4. Article number 513.

Wang L., Liao Y., Liu J., Zhao T., Jia L., Chen Z. Advances in understanding the graft healing mechanism: a review of factors and regulatory pathways // Hort. Res. 2024. V. 11. Iss. 8. Article number 175.

Wardlaw C. W. Morphogenesis in plants. New York: Wiley, 1952. 176 р.

Warren J. M., Brooks J. R., Meinzer F. C., Eberhart J. L. Hydraulic redistribution of water from Pinus ponderosa trees to seedlings: evidence for an ectomycorrhizal pathway // New Phytol. 2008. V. 178. Iss. 2. P. 382–394.

Wichmann H. E. Wurzelverwachsungen und Stocküberwallung bei Abietineen // Cbl. ges. Forstwes. 1925. V. 51. P. 250–258.

Wimmler M.-C., Bathmann J., Peters R., Jiang J., Walther M., Lovelock C. E., Berger U. Plant-soil feedbacks in mangrove ecosystems: establishing links between empirical and modelling studies // Trees. 2021. V. 35. Iss. 3. P. 1423–1438.

Wimmler M.-C., Vovides A. G., Peters R., Walther M., Nadezhdina N., Berger U. Root grafts matter for inter-tree water exchange – a quantification of water translocation between root grafted mangrove trees using field data and model-based indications // Ann. Bot. 2022. V. 130. Iss. 3. P. 317–330.

Wood J. P. Root grafting in Pinus radiata D. Don. MSc thesis. Canberra: The Austral. Nat. Univ., 1970. 107 р.

Yli-Vakkuri P. Untersuchungen über Organische Wurzelverbindungen zwischen Bäumen in Kiefernbeständen // AFF. 1953. V. 60. Iss. 3. P. 1–117.

Zajaczkowska U. Overgrowth of Douglas fir (Pseudotsuga menziesii Franco) stumps with regenerative tissue as an example of cell ordering and tissue reorganization // Planta. 2014. V. 240. Iss. 6. P. 1203–1211.


Return to list