RU EN

Page menu:

Usoltsev V. A. On the Relations of Annual Stem Increment with Forest Inventory and Bioproduction Characteristics of Trees in the Pine Forests of the Turgai Depression

Authors:
Keywords:
functional characteristics of trees, taxation indicators of trees, tree cross-sectional area growth, explanatory ability, allometric models

Abstract

UDC 630*52:630*174.754

How to cite: Usoltsev V. A.1, 2 On the relations of annual stem increment with forest inventory and bioproduction characteristics of trees in the pine forests of the Turgai Depression // Sibirskij Lesnoj Zurnal (Sib. J. For. Sci.). 2024. N. 6. P. … (in Russian with English abstract and references).

DOI: 10.15372/SJFS20240607

EDN: …

© Usoltsev V. A., 2024

The development of ecology implies the possibility of predicting the ecological functions of plants based on their functional characteristics, in particular, the specific leaf area, as the ratio of leaf surface area to their dry weight (SLA), and leaf mass per area (LMA), as the inverse of SLA. However, it was found that at the global level, SLA explains only 3.1 % of the variability in tree height growth. The introduction and use of the integral production feature Mp, as the product of LMA and the area of the horizontal projection of the crown, showed that the explanation of the variability of tree stem growth on the community of 125 species increased to 31 %, but, at the same time, did not show the advantages of Mp in the explanatory ability of the variability of growth compared with the stem diameter. The purpose of this study is to find out in what ratio, when modeling the tree stem growth, the explanatory power of a production indicator and a set of inventory features, such as stem diameter, tree height and tree age, may consist. For this purpose, according to the data of 300 sample trees taken on 30 sample plots in pure Scots pine forests of the Turgai Depression, a sequence of allometric models in a different combination of dependent and independent variables was calculated. Due to the too high complexity of determining the SLA with sufficient accuracy for 300 trees, the quotient of dividing the needle mass by the area of the horizontal projection of the crown (Pf/Sc) was used as a production indicator. This production indicator has a biological meaning, slightly different from Mp, but in terms of information it is not inferior to the latter. It was found that when calculating the multifactorial dependence of the stem cross-sectional area growth over the past 10 years on (Pf/Sc) and forest inventory indicators of trees, the contribution of (Pf/Sc) to the explanation of the growth variability was only 6 % and it was excluded from the analysis. As a result, a two-factor allometric model of the stem cross-sectional area growth over 10 years on the age and stem diameter at breast height is proposed, explaining 91 % of the variability of the growth. The proposed model makes it possible to determine the cross-sectional area basal growth of a stand in the single-aged pine forests based on the results of the accounting trees by stem diameters.  

Article


СПИСОК ЛИТЕРАТУРЫ (REFERENCES)

Репина Е. Г., Цыпин А. П., Зайчикова Н. А., Ширнаева С. Ю. Эконометрика в табличном редакторе MS Excel: практикум. Самара: Самар. гос. экон. ун-т, 2019 [Repina E. G., Tsypin A. P., Zaychikova N. A., Shirnaeva S. Yu. Ekonometrika v tablichnom redaktore MS Excel: praktikum (Econometrics in the MS Excel tabular editor: practicum). Samara: Samara St. Univ. Econ., 2019 (in Russian)].

Уткин А. И., Ермолова Л. С., Уткина И. А. Площадь поверхности лесных растений: сущность, параметры, использование. М.: Наука, 2008. 292 с. [Utkin A. I., Ermolova L. S., Utkina I. A. Ploshchad’ poverkhnosti lesnykh rasteniy: sushchnost’, parametry, ispol’zovanie (Surface area of forest plants: essence, parameters, usage). Moscow: Nauka (Science), 2008. 292 p. (in Russian)].

Цепордей И. С., Усольцев В. А., Норицин Д. В. Сопряженность климатических показателей в широтном градиенте при моделировании фитомассы лесообразующих видов Евразии // Сиб. лесн. журн. 2024. № 1. С. 40–48 [Tsepordey I. S., Usoltsev V. A., Noritsin D. V. Sopryazhennost’ klimaticheskikh pokazateley v shirotnom gradiente pri modelirovanii fitomassy lesoobrazuyushchikh vidov Evrazii (Тhe conjugacy of climatic indicators in the latitudinal gradient of Eurasia when modeling biomass of forest-forming species // Sib. lesn. zhurn. (Sib. J. For. Sci.). 2024. N. 1. P. 40–48 (in Russian with English abstract and references)].

Baskerville G. L. Use of logarithmic regression in the estimation of plant biomass // Can. J. For. Res. 1972. V. 2. N. 1. P. 49–53.

Chacón-Labella J., Hinojo-Hinojo C., Bohner T., Castorena M., Violle C., Vandvik V., Enquist B. J. How to improve scaling from traits to ecosystem processes // Trends Ecol. Evol. 2023. V. 38. P. 228–237.

Falster D. S., Brännström Å., Dieckmann U., Westoby M. Influence of four major plant traits on average height, leaf-area cover, net primary productivity, and biomass density in single-species forests: A theoretical investigation // J. Ecol. 2011. V. 99. P. 148–164.

Iida Y., Poorter L., Sterck F., Kassim A. R., Potts M. D., Kubo T., Takashi S. K. Linking size-dependent growth and mortality with architectural traits across 145 co-occurring tropical tree species // Ecology. 2014. V. 95. N. 2. P. 353–363.

Klipel J., da Cunha Morales D., Bordin K. M., Picolotto R. C., Bergamin R. S., Müller S. C. The role of tree crown on the performance of trees at individual and community levels: whole‑phenotypic context matters // Plant Ecol. 2024. (preprint).

Laurans M., Munoz F., Charles-Dominique T., Heuret P., Fortunel C., Isnard S., Sabatier S.-A., Caraglio Y., Violle C. Why incorporate plant architecture into trait-based ecology? // Trends Ecol. Evol. 2024. V. 39. N. 6. P. 524–536.

Lebrija-Trejos E., Reich P. B., Hernández A., Wright S. J. Species with greater seed mass are more tolerant of conspecific neighbours: a key driver of early survival and future abundances in a tropical forest // Ecol. Lett. 2016. V. 19. P. 1071–1080.

Liu X., Swenson N. G., Lin D., Mi X., Umaña M. N., Schmid B., Ma K. Linking individual-level functional traits to tree growth in a subtropical forest // Ecology. 2016. V. 97. P. 2396–2405.

Maynard D. S., Bialic-Murphy L., Zohner C. M., Averill C., van den Hoogen J., Ma H., Mo L., Smith G. R., Acosta A. T. R., Aubin I., Berenguer E., Boonman C. C. F., Catford J. A., Cerabolini B. E. L., Dias A. S., González-Melo A., Hietz P., Lusk C. H., Mori A. S., Niinemets Ü., Pillar V. D., Pinho B. X., Rosell J. A., Schurr F. M., Sheremetev S. N., da Silva A. C., Sosinski Ê., van Bodegom P. M., Weiher E., Bönisch G., Kattge J., Crowther T. W. Global relationships in tree functional traits // Nat. Comm. 2022. V. 13. Article 3185.

Owen H. J. F., Lines E. R. Common field measures and geometric assumptions of tree shape produce consistently biased estimates of tree and canopy structure in mixed Mediterranean forests // Ecol. Indic. 2024. V. 165. Article 112219.

Paine C. E. T., Amissah L., Auge H., Baraloto C., Baruffol M., Bourland N., Bruelheide H., Daïnou K., de Gouvenain R. C., Doucet J.-L., Doust S., Fine P. V. A., Fortunel C., Haase J., Holl K. D., Jactel H., Li X., Kitajima K., Koricheva J., Martınez-Garza C., Messier C., Paquette A., Philipson C., Piotto D., Poorter L., Posada J. M., Potvin C., Rainio K., Russo S.E., Ruiz-Jaen M., Scherer-Lorenzen M., Webb C. O., Wright S. J., Zahawi R. A., Hector A. Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why // J. Ecol. 2015. V. 103. N. 4. P. 978–989.

Poorter L., Castilho C. V., Schietti J., Oliveira R. S., Costa F. R. C. Can traits predict individual growth performance? A test in a hyper diverse tropical forest // New Phytol. 2018. V. 219. P. 109–121.

Poorter L., Rozendaal D. M. A., Bongers F., de Almeida-Cortez J. S., Zambrano A. M. A., Álvarez F. S., Andrade J. L., Villa L. F. A., Balvanera P., Becknell J. M., Bentos T. V., Bhaskar R., Boukili V., Brancalion P. H. S., Broadbent E. N., César R. G., Chave J., Chazdon R. L., Colletta G. D., Craven D., de Jong B. H. J., Denslow J. S., Dent D. H., DeWalt S. J., García E. D., Dupuy J. M., Durán S. M., Santo M. M. E., Fandiño M. C., Fernandes G. W., Finegan B., Moser V. G., Hall J. S., Hernández-Stefanoni J. L., Jakovac C. C., Junqueira A.B., Kennard D., Lebrija-Trejos E., Letcher S. G., Lohbeck M., Lopez O. R., Marín-Spiotta E., Martínez-Ramos M., Martins S. V., Massoca P. E. S., Meave J. A., Mesquita R., Mora F., de Souza Moreno V., Müller S. C., Muñoz R., Muscarella R., de Oliveira Neto S. N., Nunes Y. R. F., Ochoa-Gaona S., Paz H., Peña-Claros M., Piotto D., Ruíz J., Sanaphre-Villanueva L., Sanchez-Azofeifa A., Schwartz N. B., Steininger M. K., Thomas W.W., Toledo M., Uriarte M., Utrera L. P., van Breugel M., van der Sande M. T., van der Wal H., Veloso M. D. M., Vester H. F. M., Vieira I. C. G., Villa P. M., Williamson G. B., Wright S. J., Zanini K. J., Zimmerman J. K.. Westoby M. Wet and dry tropical forests show opposite successional pathways in wood density but converge over time // Nat. Ecol. Evol. 2019. V. 3. P. 928–934.

Rubio V. E., Zambrano J., Iida Y., Umaña M. N., Swenson N. G. Improving predictions of tropical tree survival and growth by incorporating measurements of whole leaf allocation // J. Ecol. 2021. V. 109. P. 1331–1343.

Shipley B., De Bello F., Cornelissen J. H. C., Laliberté E., Laughlin D. C., Reich P. B. Reinforcing loose foundation stones in trait based plant ecology // Oecologia. 2016. V. 180. P. 923–931.

Statsmodels, 2024. https://www.statsmodels.org/stable/index.html

Violle C., Navas M.-L., Vile D., Kazakou E., Fortunel C., Hummel I., Garnier E. Let the concept of trait be functional! // Oikos. 2007. V. 116. P. 882–892.

Volaire F., Gleason S. M., Delzon S. What do you mean “functional” in ecology? Patterns versus processes // Ecol. Evol. 2020. V. 10. P. 11875–11885.

Wright S. J., Kitajima K., Kraft N. J. B., Reich P. B., Wright I. J., Bunker D. E., Condit R., Dalling J. W., Davies S. J., Díaz S., Engelbrecht B. M., Harms K. E., Hubbell S. P., Marks C. O., Ruiz-Jaen M. C., Salvador C. M., Zanne A. E. Functional traits and the growth–mortality trade-off in tropical trees // Ecology. 2010. V. 91. P. 3664–3674.

Yang J., Cao M., Swenson N. G. Why functional traits do not predict tree demographic rates // Trends Ecol. Evol. 2018. V. 33. N. 5. P. 326–336.


Return to list