RU EN

Page menu:

Usoltsev V. А., Tsepordey I. S. Predicting Stem Biomass of Pine Trees in Natural Tree Stands and Forest Crops Due to Climate Change

Authors:
Keywords:
two-needled pines, related equations, average January temperature, average annual precipitation

Abstract

UDC 630*52:630*174.754

How to cite: Usoltsev V. А.1, 2, Tsepordey I. S.1 Predicting stem biomass of pine trees in natural tree stands and forest crops due to climate change // Sibirskij Lesnoj Zurnal (Sib. J. For. Sci.). 2021. N. 2. P. … (in Russian with English abstract and references).

DOI: 10.15372/SJFS20210207

© Usoltsev V. А., Tsepordey I. S., 2021

In the context of intensive replacement of natural forests by forest crops, it is important to know how this replacement will affect the productivity of forests and their ability to mitigate the effects of climate change. The aim of our study was to establish: (1) how the ratio of biomass and volume of tree stems of two-needled pines (subgenus Pinus L.) of natural and artificial origin changes in temperature and precipitation gradients in Eurasia and (2) what contribution to the explanation of the variability of stem biomass is made by the tree's forest inventory indices (stem age, diameter and volume), the origin of a stand (natural or artificial) and climatic factors (temperature and precipitation). To achieve this goal, a database of harvest data on the biomass of pine stems in the amount of 975 and 508 in natural and planted stands respectively, was formed. A positive relationship between the stem biomass and the average January temperature in conditions of sufficient moisture and its absence in dry conditions was established. The positive relation of stem biomass to precipitation in cold regions disappears as the transition to warm ones takes place. The stem biomass at the age of maturity in forest crops is 15 % higher than in natural stands, and in young stands, on the contrary, it is less by 4 %. The contribution of inventory indices, the origin of stands and climatic factors to the explanation of stem biomass variability was 72, 10 and 18 %, respectively. The results obtained, tested on other tree species, can be useful in selecting tree species that are most tolerant to climate change.

Article


СПИСОК ЛИТЕРАТУРЫ (REFERENCES)

Воробейчик Е. В. Статическая аллометрия в случае существенно неоднородных выборок: опасность артефакта // Сиб. экол. журн. 2001. № 5. С. 631-636 [Vorobeichik E. V. Staticheskaya allometriya v sluchae sushchestvenno neodnorodnykh vyborok: opasnost’ artefakta (Statistical allometry in the case of considerably heterogeneous samples: а risk of artifact) // Sib. ekol. zhurn. (Sib. Ecol. J.). 2001. N. 5. P. 631–636 (in Russian with English abstract)].

Гелашвили Д. Б., Иудин Д. И., Розенберг Г. С., Якимов В. Н., Солнцев В. А. Фракталы и мультифракталы в биоэкологии. Нижний Новгород: Нижегород. гос. ун-т, 2013. 370 с. [Gelashvili D. B., Iudin D. I., Rosenberg G. S., Yakimov V. N., Solntsev L. A. Fraktaly i multifraktaly v bioekologii (Fractals and multifractals in bioecology). Nizhny Novgorod: Nizhny Novgorod St. Univ., 2013. 370 р. (in Russian)].

Залесов С. В., Лобанов А. Н., Луганский Н. А. Рост и производительность сосняков искусственного и естественного происхождения. Екатеринбург: Урал. гос. лесотех. ун-т, 2002. 112 с. [Zalesov S. V., Lobanov A. N., Luganskiy N. A. Rost i proizvoditel’nost’ sosnyakov iskusstvennogo i estestvennogo proiskhozhdeniya (Growth and productivity of pine forests of artificial and natural origin). Yekaterinburg: Ural St. For. Engineer. Univ., 2002. 112 p. (in Russian)].

Кофман Г. Б. Уравнения роста и онтогенетическая аллометрия // Мат. биол. развит. / Под ред. А. И. Зотина и Е. В. Преснова. М.: Наука, 1982. С. 49-55 [Kofman G. B. Uravneniya rosta i ontogeneticheskaya allometriya (Growth equations and ontogenetic allometry) // Mat. biol. razvit. (Math. Biol. Develop.) / Zotin A. I. and Presnov E. V. (Eds.). Moscow: Nauka (Science), 1982. P. 49–55) (in Russian)].

Кофман Г. Б. Рост и форма деревьев. Новосибирск: Наука. Сиб. отд-ние, 1986. 211 с. [Kofman G. B. Rost i forma derev’ev (Growth and form of trees). Novosibirsk: Nauka. Sib. Br., 1986. 211 p.) (in Russian)].

Лиепа И. Я. Динамика древесных запасов: прогнозирование и экология. Рига: Зинатне, 1980. 170 с. [Liepa I. Ya. Dinamika drevesnykh zapasov: prognozirovanie i ekologiya (Dynamics of wood stocks: Forecast and ecology). Riga: Zinatne, 1980. 170 p. (in Russian)].

Мина Н. В., Клевезаль Г. А. Рост животных. М.: Наука, 1976. 291 с. [Mina N. V., Klevezal’ G. A. Rost zhivotnykh (Growth of animals). Moscow: Nauka (Science), 1976. 291 р. (in Russian)].

Налимов В. В. Теория эксперимента. М.: Наука, 1971. 208 с. [Nalimov V. V. Teoriya eksperimenta (The theory of the experiment). Moscow: Nauka (Science). 1971. 208 p. (in Russian)].

Налимов В. В., Чернова Н. А. Статистические методы планирования экстремальных экспериментов. М.: Наука, 1965. 340 с. [Nalimov V. V., Chernova N. A. Statisticheskie metody planirovaniya ekstremal’nykh eksperimentov (Statistical methods for planning extreme experiments). Moscow: Nauka (Science). 1965. 340 p. (in Russian)].

Поляков А. Н., Ипатов Л. Ф., Успенский В. В. Продуктивность лесных культур. М.: Агропромиздат, 1986. 240 с. [Polyakov A. N., Ipatov L. F., Uspenskiy V. V. Produktivnost’ lesnykh kul’tur (Productivity of forest crops). Moscow: Agropromizdat, 1986. 240 р. (in Russian)].

Рухович Д. И., Панкова Е. И., Калинина Н. В., Черноусенко Г. И. Количественный расчет параметров выделения зон и фаций ареалов распространения каштановых поч России на основе климато-почвенно-гранулометрического показателя [Rukhovich D. I., Pankova E. I., Kalinina N. V., Chernousenko G. I. Kolichestvenny raschet parametrov vydeleniya zon i fatsiy arealov rasprostraneniya kashtanovykh poch Rossii na osnove klimato-pochvenno-granulometricheskogo pokazatelya (Quantification of the parameters of zones and facies of chestnut soils in Russia on the basis of the climatic-soil-granulometric index) // Pochvovedenie (Soil Sci.). 2019. N. 3. P. 304-316 (in Russian with English abstract)].

Усольцев В. А. Формирование ствола у березы семенного и порослевого происхождения в аспекте аллометрического роста // Вестн. с.-х. науки Казахстана. 1976. № 7. С. 83–88 [Usoltsev V. A. Formirovanie stvola u berezy semennogo i poroslevogo proiskhozhdeniya v aspekte allometricheskogo rosta (Formation of the birch stem of seed and vegetative origin in the aspect of allometric growth) // Vestn. s.-kh. nauki Kazakhstana (Bull. Agr. Sci. Kazakhstan]. 1976. N. 7. P. 83–88) (in Russian)].

Усольцев В. А. Фитомасса лесов Северной Евразии: предельная продуктивность и география. Екатеринбург: УрО РАН, 2003. 406 с. [Usoltsev V. A. Fitomassa lesov Severnoy Evrazii: predel’naya produktivnost’ i geografiya (Forest biomass of Northern Eurasia: The limits of productivity and their geography). Yekaterinburg: Ural Br., Rus. Acad. Sci., 2003. 406 p. (in Russian with English title, summary and contents)].

Усольцев В. А. О применении регрессионного анализа в лесоводственных задачах // Лесн. таксация и лесоустройство. 2004. № 1 (33). С. 49–55 [Usoltsev V. A. O primenenii regressionnogo analiza v lesovodstvennykh zadachakh (On the application of regression analysis in silvicultural tasks) // Lesn. taksatsiya i lesoustroystvo (For. Invent. For Plann.). 2004. N. 1 (33). P. 49–55) (in Russian with English abstract)].

Усольцев В. А., Цепордей И. С. Климатические градиенты биомассы насаждений Quercus spp. на территории Евразии // Сиб. лесн. журн. 2020а. № 6. С. 16–29 [Usoltsev V. А., Tsepordey I. S. Klimaticheskie gradienty biomassy nasazhdeniy Quercus spp. na territorii Evrazii (Climate gradients of Quercus spp. forest biomass in Eurasia) // Sib. lesn. zurn. (Sib. J. For. Sci.). 2020а. N. 6. P. 16–29 (in Russian with English abstract and references)].

Усольцев В. А., Цепордей И. С. Квалиметрия фитомассы лесных деревьев: плотность и содержание сухого вещества: моногр. Екатеринбург: УГЛТУ, 2020б. 178 c. [Usoltsev V. А., Tsepordey I. S. Kvalimetriya fitomassy lesnykh derev’ev: plotnost’ i soderzhanie sukhogo veshchestva (Qualimetry of forest tree biomass: density and dry matter content): monograph. Yekaterinburg: Ural St. For. Engineer. Univ., 2020b. 178 p. (in Russian with English abstract and references)]. https://elar.usfeu.ru/handle/123456789/10022

Усольцев В. А., Цепордей И. С., Осмирко А. А. Биологическая продуктивность лесов Евразии в связи с температурой и осадками // Мат-лы Всерос. науч. конф. с междунар. участ. «Лесные экосистемы бореальной зоны: биоразнообразие, биоэкономика, экологические риски», Красноярск, 26–31 авг. 2019 г. Красноярск: Ин-т леса им. В. Н. Сукачева СО РАН, 2019. С. 458–460 [Usoltsev V. A., Tsepordey I. S., Osmirko A. A. Biologicheskaya produktivnost’ lesov Evrazii v svyazi s temperaturoy i osadkami (Biological productivity of Eurasian forests due to temperature and precipitation) // Mat-ly Vseros. nauch. konf. s mezhdunar. uchast. «Lesnye ekosistemy boreal’noy zony: bioraznoobrazie, bioekonomika, ekologicheskie riski» (Proc. All-Rus. Sci. Conf. Int. participat. «Forest ecosystems of the boreal zone: biodiversity, bioeconomics, environmental risks», Krasnoyarsk, 26–31 Aug. 2019. Krasnoyarsk: In-t lesa im. V. N. Sukacheva SO RAN (V. N. Sukachev Inst. For., Rus. Acad. Sci., Sib. Br.), 2019. P. 458–460 (in Russian with English title, summary and contents)].

Alekseev A. S., Sharma S. K. Long-term growth trends analysis of Norway spruce stands in relation to possible climate change: Case study of Leningrad region // IVUZ. Lesn. zhurn. (Proc. Higher Educ. Inst. For. J.). 2020. N. 3. P. 42–54.

Baskerville G. L. Use of logarithmic regression in the estimation of plant biomass // Can. J. For. Res., 1972. V. 2. N. 1. P. 49–53.

DeLeo V. L., Menge D. N. L., Hanks E. M., Juenger T. E., Lasky J. R. Effects of two centuries of global environmental variation on phenology and physiology of Arabidopsis thaliana // Glob. Change Biol. 2020. V. 26. Iss. 2. P. 523–538.

Duan H., Huang G., Zhou Sh., Tissue D. T. Dry mass production, allocation patterns and water use efficiency of two conifers with different water use strategies under elevated [CO2], warming and drought conditions // Europ. J. For. Res. 2018. V. 137. Iss. 5. P. 605–618.

Enquist B. J., Niklas K. J. Global allocation rules for patterns of biomass partitioning in seed plants // Science. 2002. V. 295. Iss. 5559. P. 1517–1520.

Felton A., Nilsson U., Sonesson J., Felton A. M., Roberge J. M., Ranius T., Ahlström M., Bergh J., Björkman C., Boberg J., Drössler L., Fahlvik N., Gong P., Holmström E., Keskitalo E. C. H., Klapwijk M. J., Laudon H., Lundmark T., Niklasson M., Nordin A., Pettersson M., Stenlid J., Sténs A., Wallertz K. Replacing monocultures with mixed-species stands: Ecosystem service implications of two production forest alternatives in Sweden // Ambio. 2016. V. 45. Suppl. Iss. 2. P. 124–139.

Guo Q., Ren H. Productivity as related to diversity and age in planted versus natural forests // Glob. Ecol. Biogeogr. 2014. V. 23. Iss. 12. P. 1461–1471.

Kirilenko A. P., Sedjo R. A. Climate change impacts on forestry // PNAS. 2007. V. 104. Iss. 50. P. 19697–19702.

Kosanic A., Anderson K., Harrison S., Turkington T., Bennie J. Changes in the geographical distribution of plant species and climatic variables on the West Cornwall Peninsula (South West UK) // PLoS ONE. 2018. V. 13. Iss. 2. 18 p. Article number: e0191021.

Lewis S. L., Wheeler C. E., Mitchard E. T. A., Koch A. Regenerate natural forests to store carbon // Nature. 2019. V. 568. Iss. 7750. P. 25–28.

Mascaro J., Litton C. M., Hughes R. F., Uowolo A., Schnitzer S. A. Is logarithmic transformation necessary in allometry? Ten, one-hundred, one-thousand-times yes // Biol. J. Linnean Soc. 2014. V. 111. Iss. 1. P. 230–233.

McCarthy M. C., Enquist B. J., Kerkhoff A. J. Organ partitioning and distribution across the seed plants: assessing the relative importance of phylogeny and function // Int. J. Plant Sci. 2007. V. 168. N. 5. P. 751–761.

Morley J. W., Batt R. D., Pinsky M. L. Marine assemblages respond rapidly to winter climate variability // Glob. Change Biol. 2017. V. 23. Iss. 7. P. 2590–2601.

Navarro-Cerrillo R. M., Rodriguez-Vallejo C., Silveiro E., Hortal A., Palacios-Rodríguez G., Duque-Lazo J., Camarero J. J. Cumulative drought stress leads to a loss of growth resilience and explains higher mortality in planted than in naturally regenerated Pinus pinaster stands // Forests. 2018. V. 9. Iss. 6. 18 p. Article number: 358.

Niklas K. J. Plant allometry: is there a grand unifying theory? // Biol. Rev. 2004. V. 79. Iss. 4. P. 871–889.

Qiu Q., Yun Q., Zuo Sh., Yan J., Hua L., Ren Y., Tang J., Li Y., Chen Q. Variations in the biomass of Eucalyptus plantations at a regional scale in Southern China // J. For. Res. 2018. V. 29. Iss. 5. P. 1263–1276.

Rahaman M. T., Gurung D. B., Pitol M. N. S. Comparative study of understory between exotic monoculture plantation (Acacia sp.) and adjacent natural sal (Shorea Robusta) forest // Europ. J. Agr. Food Sci. 2020. V. 2. N. 6. 9 p. Article number: 204.

Roberts S. M. Chapter 13 – The role of cyclical climate oscillations in species distribution shifts under climate change In: Predicting future oceans. Sustainability of ocean and human systems amidst global environmental change. / A. M. Cisneros-Montemayor, W. W .L. Cheung and Y. Ota (Eds.). Elsevier Inc., 2019. P. 129–135.

Rodriguez-Vallejo C., Navarro-Cerrillo R. M. Contrasting response to drought and climate of planted and natural Pinus pinaster Aiton forests in Southern Spain // Forests. 2019. V. 10. Iss. 7. 19 p. Article number: 603.

Rukhovich D. I., Pankova E. I., Kalinina N. V., Chernousenko G. I. Quantification of the parameters of zones and facies of chestnut soils in Russia on the basis of the climatic-soil-textural index // Euras. Soil Sci. 2019. V. 52. Iss. 3. P. 271–282 (Original Rus. Text © D. I. Rukhovich, E. I. Pankova, N. V. Kalinina, G. I. Chernousenko, 2019, publ. in Pochvovedenie. 2019. N. 3. P. 304–316).

Saxe H., Cannell M. G. R., Johnsen Ø., Ryan M. G., Vourlitis G. Tree and forest functioning in response to global warming // New Phytol. 2001. V. 149. Iss. 3. P. 369–400.

Serreze M. C., Walsh J. E., Chapin III F. S., Osterkamp T., Dyurgerov M., Romanovsky V., Oechel W. C., Morison J., Zhang T., Barry R. G. Observational evidence of recent change in the northern high-latitude environment // Clim. Change. 2000. V. 46. Iss. 1–2. P. 159–207.

Sperry J. S., Venturas M. D., Todd H. N., Trugman A. T., Anderegg W. R. L., Wang Y., Tai X. The impact of rising CO2 and acclimation on the response of US forests to global warming // PNAS. 2019. V. 116. Iss. 51. P. 25734-25744.

Stinziano J. R., Way D. A. Combined effects of rising [CO2] and temperature on boreal forests: growth, physiology and limitations // Botany. 2014. V. 92. Iss. 6. P. 425–436.

Usoltsev V. A. Single-tree biomass data for remote sensing and ground measuring of Eurasian forests: digital version. The second edition, enlarged. Yekaterinburg: Ural St. For. Engineer. Univ.; Bot. Garden, Ural Br. Rus. Acad. Sci., 2020. https://elar.usfeu.ru/bitstream/1234567 89/9647/2/Base1_v2_ob.pdf

Usoltsev V. A., Shobairi S. O. R., Tsepordey I. S., Chasovskikh V. P. On some differences in the response of Picea spp. and Abies spp. single-tree biomass structure to changes in temperatures and precipitation in Eurasia // Environ. & Ecol. 2020. V. 38 (3). P. 300–313.

West G. B., Brown J. H., Enquist B. J. A general model for the origin of allometric scaling laws in biology // Science. 1997. V. 276. Iss. 5309. P. 122–126.

Widagdo F. R. A., Xie L., Dong L., Li F. Origin-based biomass allometric equations, biomass partitioning, and carbon concentration variations of planted and natural Larix gmelinii in northeast China // Glob. Ecol. Conserv. 2020. V. 23. 16 p. Article number: e01111.

World Weather Maps, 2007. https://www.mapsofworld.com/referrals/weather/

Xiang W., Li L., Ouyang S., Xiao W., Zeng L., Chen L., Lei P., Deng X., Zeng Y., Fang J., Forrester D. I. Effects of stand age on tree biomass partitioning and allometric equations in Chinese fir (Cunninghamia lanceolata) plantations // Europ. J. For. Res. 2020. https://doi.org/10. 1007/s10342-020-01333-0

Yu Z., Liu S., Wang J., Wei X., Schuler J., Sun P., Harper R., Zegre N. Natural forests exhibit higher carbon sequestration and lower water consumption than planted forests in China // Glob. Chang. Biol. 2019. V. 25. Iss. 1. P. 68–77.

Zhang L., Deng X., Lei X.D., Xiang W., Peng C., Lei P., Yan W. Determining stem biomass of Pinus massoniana L. through variations in basic density // Forestry. 2012. V. 85. Iss. 5. P. 601–609. 


Return to list