V'yukhin S. O., Grigoriev A. A., Balakin D. S., Timofeev A. S., Moiseev P. A. Structure and Dynamics of Cenopopulations of Shrub Alder in Forest-Mountain Tundra Ecotone in the Western Part of the Putorana Plateau
Abstract
UDC 630*56:582.47:551
How to cite: V'yukhin S. O., Grigoriev A. A., Balakin D. S., Timofeev A. S., Moiseev P. A. Structure and dynamics of cenopopulations of shrub alder in forest-mountain tundra ecotone in the western part of the Putorana plateau // Sibirskij Lesnoj Zurnal (Sib. J. For. Sci.). 2024. N. 4. P. 38–47 (in Russian with English abstract and references).
DOI: 10.15372/SJFS20240404
EDN: …
© V'yukhin S. O., Grigoriev A. A., Balakin D. S., Timofeev A. S., Moiseev P. A., 2024
Monitoring the distribution of tree and shrub vegetation at the upper forest limit in mountainous regions is one of the simplest and most effective methods for obtaining evidence of the effects of climate change on vegetation. One of the largest and most widespread shrub species on the Putorana plateau is the shrub alder (Duschekia fruticosa (Rupr.) Pouzar). The study presents an analysis of the age and morphological structure of shrub alder thickets, which grow at different altitudes (200–600 m above sea level) within the forest-tundra ecotone in forest stands of different density on slopes with different exposures in the western part of the Putorana plateau. It has been established that the intensive expansion of shrub alder into mountain tundras, sparse and open forests on the slopes of all exposures of the Sukhie Gory massif occurred in the 20th century, mainly in its second half. The influence of Gmelin larch (Larix gmelinii (Rupr.) Kuzen) stands on the distribution and morphological structure of shrub alder cenopopulations was revealed. The colonization and spread of shrub alder occurs in conjunction with larch stands. We established relationships between snow depth and the sum of projections of shrub crowns (R² = 0.582). Shrub alder cannot survive in the absence of snow cover. There are significant differences in the distribution of shrub alder depending on the slope exposure. The distribution of shrub alder is higher on the slopes of southern and eastern exposures. The largest number of shrubs grow mainly in the lower part of the ecotone, where snow masses accumulate in greater quantities. The most likely explanation for the increase in density and advance to the mountains of alder shrub may be a general change in climatic conditions in the study area.
Article
СПИСОК ЛИТЕРАТУРЫ (REFERENCES)
Ваганов Е. А., Круглов В. Б., Васильев В. Г. Дендрохронология: учеб. пособ. Красноярск: Сиб. фед. ун-т, 2008. 120 с. [Vaganov E. A., Kruglov V. B., Vasil'ev V. G. Dendrokhronologiya: ucheb. posob. (Dendrochronology: tutorial). Krasnoyarsk: Sib. fed. un-t (Sib. Fed. Univ.), 2008. 120 p. (in Russian)].
Горчаковский П. Л., Шиятов С. Г. Фитоиндикация условий среды и природных процессов в высокогорьях. М.: Наука, 1985. 208 с. [Gorchakovskiy P. L., Shiyatov S. G. Fitoindikatsiya usloviy sredy i prirodnykh protsessov v vysokogor'yakh (Phytoindication of environmental conditions and natural processes in the highlands). Moscow: Nauka (Science), 1985. 208 p. (in Russian)].
Куваев В. Б. Высотное распределение растений в горах Путорана. Л.: Наука. Ленингр. отд-ние, 1980. 264 с. [Kuvaev V. B. Vysotnoe raspredelenie rasteniy v gorakh Putorana (Altitudinal distribution of plants in the Putorana Mountains). Leningrad: Nauka. Leningr. otd-nie (Science. Leningrad Br.), 1980. 264 p. (in Russian)].
Лащинский Н. Н. Редкие кустарниковые сообщества лесного пояса заповедника «Кузнецкий Алатау» // Вестн. Том. гос. ун-та. Биол. 2015. № 1 (29). С. 56–67 [Lashchinskiy N. N. Redkie kustarnikovye soobshchestva lesnogo poyasa zapovednika «Kuznetskiy Alatau» (Rare shrub communities of the forest belt of the Kuznetsky Alatau Nature Reserve) // Vestn. Tom. gos. un-ta. Biol. (Bull. Tomsk St. Univ. Biol.). 2015. N. 1 (29). P. 56–67 (in Russian with English abstract)].
Норин Б. Н., Белоусова Ж. М., Березовский В. А. Горные фитоценотические системы Субарктики. Наука. Ленингр. отд-ние, 1986. 292 с. [Norin B. N., Belousova Zh. M., Berezovskiy V. A. Gornye fitotsenoticheskie sistemy Subarktiki (Mountain phytocenotic systems of the Subarctic). Leningrad: Nauka. Leningr. otd-nie (Science. Leningrad Br.), 1986. 292 p. (in Russian)].
Пономарёва Т. В.: Содержание и распределение серы в мерзлотно-таежных почвах плато Путорана // Хвойные бореальной зоны. 2008. № 3 (25). С. 290–294 [Ponomareva T. V. Soderzhanie i raspredelenie sery v merzlotno-taezhnykh pochvakh plato Putorana (Content and distribution of sulfur in permafrost-taiga soils of the Putorana plateau) // Khvoynye boreal'noy zony (Coniferous of the boreal zone). 2008. N. 3 (25). P. 290–294 (in Russian with English abstract)].
Шиятов С. Г., Ваганов Е. А., Кирдянов А. В., Круглов В. Б., Мазепа В. С., Наурзбаев М. М., Хантемиров Р. М. Методы дендрохронологии. Ч. I. Основы дендрохронологии. Сбор и получение древесно-кольцевой информации. Красноярск: КГУ, 2000. 80 с. [ Shiyatov S. G., Vaganov E. A., Kirdyanov A. V., Kruglov V. B., Mazepa V. S., Naurzbaev M. M., Khantemirov R. M. Metody dendrokhronologii. Ch. I. Osnovy dendrokhronologii. Sbor i poluchenie drevesno-kol'tsevoy informatsii (Methods of dendrochronology. Part I. Fundamentals of dendrochronology. Collection and getting tree-ring information). Krasnoyarsk: KGU (Krasnoyarsk St. Univ.), 2000. 80 p. (in Russian)].
Boulanger-Lapointe N., Lévesque E., Baittinger C., Schmid, N. M. Local variability in growth and reproduction of Salix arctica in the High Arctic // Polar Res. 2016. V. 35. Article number: 24126. 11 p.
Chapin F. S., Sturm M., Serreze M. C., McFadden J. P., Key J. R., Lloyd A. H., McGuire A. D., Rupp T. S., Lynch A. H., Schimel J. P., Beringe, J., Chapman W. L., Epstein H. E., Euskirchen E. S., Hinzman L. D., Jia G., Ping C-L., Tape K. D., Thompson C. D. C., Walker D. A., Welker J. M. Role of land-surface changes in arctic summer warming // Science. 2005. V. 310. Iss. 5748. P. 657–660.
Forbes B. C., Fauria M. M., Zetterberg P. Russian Arctic warming and “greening” are closely tracked by tundra shrub willows // Glob. Change Biol. 2010. V. 16. Iss. 5. P. 1542–1554.
Grigoriev A. A., Shalaumova Y. V., Vyukhin S. O., Balakin D. S., Kukarskikh V. V., Vyukhina A. A., Camarero J. J., Moiseev P. A. Upward treeline shifts in two regions of Subarctic Russia are governed by summer thermal and winter snow conditions // Forests. 2022. V. 13. Iss. 2. Article number: 174. 20 p.
Hagedorn F., Shiyatov S. G., Mazepa V. S., Dev N. M., Grigoriev A. A., Bartysh A. A., Fomin V. V., Kapralov D. S., Terent’ev M., Bugman H., Rigling A., Moiseev P. A. Treeline advances along the Urals mountain range – driven by improved winter conditions? // Glob. Chang. Biol. 2014. V. 20. Iss. 11. P. 3530–3543.
Harsch M. A., Hulme P. E., McGlone M. S., Dunca R. P. Are treelines advancing? A global meta-analysis of treeline response to climate warming // Ecol. Lett. 2009. V. 12. Iss. 10. P. 1040–1049.
Kammer A., Hagedorn F., Shevchenko I., Leifeld J., Guggenberger G., Goryacheva T., Rigling A., Moiseev P. A. Treeline shifts in the Ural mountains affect soil organic matter dynamics // Glob. Change Biol. 2009. V. 15. Iss. 6. P. 1570–1583.
Kullman L., Öberg L. Post-little Ice Age tree line rise and climate warming in the Swedish Scandes: a landscape ecological perspective // J. Ecol. 2009. V. 97. Iss. 3. P. 415–429.
Moiseev P. A., Hagedorn F., Balakin D. S., Bubnov M. O., Devi N. M., Kukarskih V. V., Mazepa V. S., Viyukhin S. O., Viyukhina A. A., Grigoriev A. A. Stand biomass at treeline ecotone in Russian Subarctic mountains is primarily related to species composition but its dynamics driven by improvement of climatic conditions // Forests. 2022. V. 13. Iss. 2. Article number 254. 21 p.
Myers-Smith I. H., Hik D. S. Climate warming as a driver of tundra shrubline advance // J. Ecol. 2018. V. 106. Iss. 2. P. 547–560.
Pauli H., Gottfried M., Dullinger S., Abdaladze O., Akhalatsi M., Alonso J. L. B., Coldea G., Dick J., Erschbamer B., Calzado R. F., Ghosn D., Holten J. I., Kanka R., Kazakis G., Kollár J., Larsson P., Moiseev P. A., Moiseev D. A., Molau U., Molero M. J., Nagy L., Pelino G., Puşcaş M., Rossi G., Stanisci A., Syverhuset A. O., Theurillat J. P., Tomaselli M., Unterluggauer P., Villar L., Vittoz P., Grabherr G. Recent plant diversity changes on Europe’s mountain summits // Science. 2012. V. 336. Iss. 6079. P. 353–355.
Sturm M., Racine C., Tape K. Climate change: increasing shrub abundance in the Arctic // Nature. 2001. V. 411. N. 6837. P. 546–547.
Terskaia A., Dial R. J., Sullivan P. F. Pathways of tundra encroachment by trees and tall shrubs in the Western Brooks Range of Alaska // Ecography. 2020. V. 43. Iss. 5. P. 769–778.
Van den Bergh T., Körner C., Hiltbrunner E. Alnus shrub expansion increases evapotranspiration in the Swiss Alps // Reg. Environ. Change. 2018. V. 18. Iss. 5. P. 1375–1385.