RU EN

Page menu:

Oskorbina M. V., Kalugina O. V., Afanas’eva L. V. Impact of Emissions from Aluminum Production on Photosynthetic Apparatus of Siberian Larch

Keywords:
Larix sibirica L., chlorophyll fluorescence, morphometric parameters of needles, aerotechnogenic pollution
Pages:
31–39

Abstract

UDC 581.13+574.24

How to cite: Oskorbina M. V.1, Kalugina O. V.1, Afanas’eva L. V.2 Impact of emissions from aluminum production on photosynthetic apparatus of Siberian larch // Sibirskij Lesnoj Zurnal (Sib. J. For. Sci.). 2024. N. 1. P. 31–39 (in Russian with English abstract and references).

DOI: 10.15372/SJFS20240104

EDN: …

© Oskorbina M. V., Kalugina O. V., Afanas’eva L. V., 2024

The article presents data on the effect of emissions from the Bratsk Aluminum Plant (BRAZ) on the photosynthetic apparatus of Siberian larch (Larix sibirica L.). On the basis of data on the content of elements-pollutants (fluorine, sulphur, heavy, light metals and metalloids) in needle trees using cluster analysis the trees of critical, strong, moderate, low level of contamination, as well as background stands were identified in the surveyed area. It has been established that in the needles of trees with an increase in the level of pollution, the content of pigments decreases: chlorophyll a – by 68 %, chlorophyll b – by 72 %, carotenoids – by 67 % compared to the background level. The morphometric parameters of the assimilation organs of polluted trees (the length of auxiblasts of the second year of life, the mass of needles on them, and the length of needles) are reduced by 45–65 % compared to the background values; their minimum values are found at a critical level of pollution (on the territory of the BrAZ industrial zone). The presence of functional disorders of the photosynthetic apparatus of needles in conditions of pollution by emissions from an aluminum plant is evidenced by a change in the parameters of chlorophyll fluorescence: a decrease in the photochemical activity of photosystem II (Fv/Fm) by 7 %, the electron transport flow rate (ETR) – by 26 %, the quantum yield of photosystem II (Y(II) – by 35 %, as well as an increase in background fluorescence of chlorophyll F0 by 26–35 % and non-photochemical quenching of chlorophyll fluorescence (NPQ) by 27 % compared to background values. The maximum negative impact of emissions on the photochemical processes of larch needles was recorded at the critical level of trees pollution.

Article


СПИСОК ЛИТЕРАТУРЫ (REFERENCES)

Алексеев А. М. Водный режим растения и влияние на него засухи. Казань: Татиздат, 1984. 180 c. [Alekseev A. M. Vodny rezhim rasteniya i vliyanie na nego zasukhi. Kazan’: Tatizdat, 1984. 180 p. (in Russian)].

Гамалей Ю. В. Флоэма листа: развитие структуры и функции в связи с эволюцией цветковых растений. Л.: Наука. Ленингр. отд-ние, 1990. 144 с. [Gamaley Yu. V. Floema lista: razvitie struktury i funktsii v svyazi s evolyutsiey tsvetkovykh rasteniy. Leningrad: Nauka (Science). Leningr. otd-nie (Leningrad Br.), 1990. 144 p. (in Russian)].

Государственный доклад «О состоянии и об охране окружающей среды Иркутской области в 2020 г.». Иркутск: Мегапринт, 2021 330 с. [Gosudarstvenny doklad «O sostoyanii i ob okhrane okruzhayushchey sredy Irkutskoy oblasti v 2020 g.» (State report «On the state and protection of the environment of Irkutsk Oblast in 2020»). Irkutsk: Megaprint, 2021. 330 p. (in Russian)].

Гусев Н. А. Некоторые методы исследования водного режима растений. Л.: Изд-во АН СССР, 1960. 61 с. [Gusev N. A. Nekotorye metody issledovaniya vodnogo rezhima rasteniy. Leningrad: Izd-vo AN SSSR (USSR Acad. Sci. Publ.), 1960. 61 p. (in Russian)].

Загирова С. Структура хвои и фотосинтез лиственницы на Крайнем Севере // Вестн. ин-та биол. Коми науч. центра УрО РАН. 2007. № 5. С. 7–9 [Zagirova S. Struktura khvoi i fotosintez listvennitsy na Kraynem Severe (Structure of needles and photosynthesis of larch in the Far North) // Vestn. in-ta biol. Komi nauch. tsentra UrO RAN (Bull. Inst. Biol. Komi Sci. Center Ural Br. Rus. Acad. Sci.). 2007. N. 5. P. 7–9 (in Russian with English abstract)].

Зайцев Г. Н. Математика в экспериментальной ботанике. М.: Наука. 1990. 296 с. [Zaytsev G. N. Matematika v eksperimental’noy botanike (Mathematics in experimental botany). Moscow: Nauka (Science), 1990. 296 p. (in Russian)].

Иванова М. В., Суворова Г. Г. Структура и функция фотосинтетического аппарата хвойных в условиях юга Восточной Сибири. Иркутск: Ин-т геогр. им. В. Б. Сочавы СО РАН, 2014. 79 с. [Ivanova M. V., Suvorova G. G. Struktura i funktsiya fotosinteticheskogo apparata khvoynykh v usloviyakh yuga Vostochnoy Sibiri (Structure and function of the photosynthetic apparatus of conifers in the south of Eastern Siberia). Irkutsk: In-t geogr. im. V. B. Sochavy SO RAN (V. B. Sochava Inst. Geogr. Sib. Br. Rus. Acad. Sci.), 2014. 79 p. (in Russian)].

Касимов Н. С., Битюкова В. Р., Кислов А. В., Кошелева Н. Е., Никифорова Е. М., Малхазова С. М., Шартова Н. В. Проблемы экогеохимии крупных городов // Охрана и разведка недр. 2012. № 7. С. 8–13 [Kasimov N. S., Bityukova V. R., Kislov A. V., Kosheleva N. E., Nikiforova E. M., Malkhazova S. M., Shartova N. V. Problemy ekogeokhimii krupnykh gorodov (Problems of ecogeochemistry of large cities) // Okhrana i razvedka nedr (Protection and Exploration of Depths). 2012. N. 7. P. 8–13 (in Russian with English abstract)].

Клячко-Гурвич Г. Л., Пронина Н. А., Ладыгин В. Г., Цоглин Л. Н., Семененко В. Е. Разобщенное функционирование отдельных фотосистем. I. Особенности и роль десатурации жирных кислот // Физиол. раст. 2000. Т. 47. № 5. С. 688–698 [Klyachko-Gurvich G. L., Pronina N. A., Ladygin V. G., Tsoglin L. N., Semenenko V. E. Razobshchennoe funktsionirovanie otdel’nykh fotosistem. I. Osobennosti i rol’ desaturatsii zhirnykh kislot (Separate functioning of individual photosystems. I. Features and role of fatty acid desaturation) // Fiziol. rast. (Plant Physiol.). 2000. V. 47. N. 5. P. 688–698 (in Russian with English abstract)].

Корзухин М. Д., Выгодская Н. Н., Милюкова И. М., Татаринов Ф. А., Цельникер Ю. Л. Применение объединенной модели фотосинтеза и устьичной проводимости к анализу ассимиляции углерода елью и лиственницей в лесах России // Физиол. раст. 2004. Т. 51. № 3. С. 341–354 [Korzukhin M. D., Vygodskaya N. N., Milyukova I. M., Tatarinov F. A., Tsel’niker Yu. L. Primenenie ob’edinennoy modeli fotosinteza i ust’ichnoy provodimosti k analizu assimilyatsii ugleroda el’yu i listvennitsey v lesakh Rossii (Application of a coupled photosynthesis-stomatal conductance model to analysis of carbon assimilation by spruce and larch trees in the forests of Russia) // Fiziol. rast. (Plant Physiol.). 2004. V. 51. N. 3. P. 341–354 (in Russian with English abstract)].

Маторин Д. Н., Алексеев А. А. Флуоресценция хлорофилла для биоиндикации растений. М.: ПКЦАльтекс, 2013. 364 с. [Matorin D. N., Alekseev A. A. Fluorestsentsiya khlorofilla dlya bioindikatsii rasteniy (Chlorophyll fluorescence for plant bioindication). Moscow: PKCAl'teks, 2013. 364 p. (in Russian)].

Михайлова Т. А., Бережная Н. С., Игнатьева О. В. Элементный состав хвои и морфофизиологические параметры сосны обыкновенной в условиях техногенного загрязнения. Иркутск: Ин-т геогр. им. В. Б. Сочавы СО РАН, 2006. 134 с. [Mikhaylova T. A., Berezhnaya N. S., Ignat'eva O. V. Elementny sostav khvoi i morfofiziologicheskie parametry sosny obyknovennoy v usloviyakh tekhnogennogo zagryazneniya (Elemental composition of needles and morphophysiological parameters of Scots pine under conditions of technogenic pollution). Irkutsk: In-t geogr. im. V. B. Sochavy SO RAN (V. B. Sochava Inst. Geogr. Sib. Br. Rus. Acad. Sci.), 2006. 134 p. (in Russian)].

Михайлова Т. А., Калугина О. В., Шергина О. В. Мониторинг техногенного загрязнения и состояния сосновых лесов на примере Иркутской области // Лесоведение. 2020. № 3. С. 265–273 [Mikhaylova T. A., Kalugina O. V., Shergina O. V. Monitoring tekhnogennogo zagryazneniya i sostoyaniya sosnovykh lesov na primere Irkutskoy oblasti (Monitoring of technogenic pollution and the condition of pine forests on the example of Irkutsk Oblast) // Lesovedenie (For. Sci.). 2020. N. 3. P. 265–273 (in Russian with English abstract and references)].

Суворова Г. Г. Фотосинтез хвойных деревьев в условиях Сибири. Новосибирск: Акад. изд-во «Гео», 2009. 195 с. [Suvorova G. G. Fotosintez khvoynykh derev'ev v usloviyakh Sibiri (Photosynthesis of coniferous trees in Siberian conditions). Novosibirsk: Akad. izd-vo «Geo» (Geo Acad. Publ.), 2009. 195 p. (in Russian with English title, summary and contents)].

Суворова Г. Г., Щербатюк А. С., Янькова Л. С., Копытова Л. Д. Максимальная интенсивность фотосинтеза ели сибирской и лиственницы сибирской в Прибайкалье // Лесоведение. 2003. № 6. С. 58–65 [Suvorova G. G., Shcherbatyuk A. S., Yan’kova L. S., Kopytova L. D. Maksimal'naya intensivnost’ fotosinteza eli sibirskoy i listvennitsy sibirskoy v Pribaykal'e (Maximum intensity of photosynthesis of Siberian spruce and Siberian larch in Pribaykal’e) // Lesovedenie (For. Sci.). 2003. N. 6. P. 58–65 (in Russian with English abstract)].

Тужилкина В. В. Фотосинтетические пигменты хвои ели сибирской в среднетаежных лесах Европейского северо-востока России // Сиб. лесн. журн. 2017. № 1. С. 65–73 [Tuzhilkina V. V. Fotosinteticheskie pigmenty khvoi eli sibirskoy v srednetaezhnykh lesakh Evropeyskogo severo-vostoka Rossii (Photosynthetic pigments of Siberian spruce needles in the middle taiga forests of the European northeast of Russia) // Sib. lesn. zhurn. (Sib. J. For. Sci.). 2017. N. 1. P. 65–73 (in Russian with English abstract)].

Тужилкина В. В. Влияние аэротехногенного загрязнения целлюлозно-бумажного производства на пигментный комплекс сосны обыкновенной // Теор. и прикл. экол. 2021. № 1. С. 90–96 [Tuzhilkina V. V. Vliyanie aerotekhnogennogo zagryazneniya tsellyulozno-bumazhnogo proizvodstva na pigmentny kompleks sosny obyknovennoy (The influence of aerotechnogenic pollution of pulp and paper production on the pigment complex of Scots pine) // Teor. i prikl. ekol. (Theor. & Appl. Ecol.). 2021. N. 1. P. 90–96 (in Russian with English abstract)].

Шереметьев С. Н. Травы на градиенте влажности почвы. М.: Тов-во науч. изд. КМК, 2005. 271 с. [Sheremet’ev S. N. Travy na gradiente vlazhnosti pochvy (Grasses on a soil moisture gradient). Moscow: Tov-vo nauch. izd. KMK (Partnership Sci. Publ. KMK), 2005. 271 p. (in Russian)].

Янин Е. П. Скандий в окружающей среде (распространенность, техногенные источники, вторичные ресурсы) // Пробл. окр. среды и природ. рес. 2007. № 8. C. 70–90 [Yanin E. P. Skandiy v okruzhayushchey srede (rasprostranennost’, tekhnogennye istochniki, vtorichnye resursy) (Scandium in the environment (prevalence, technogenic sources, secondary resources)) // Probl. оkr. sredy i prirod. res. (Probl. Environ. Nar. Res.). 2007. N. 8. P. 70–90 (in Russian)].

Gameiro C., Utkin A. B., Cartaxana P., Silva J. M. da, Matos A. R. The use of laser induced chlorophyll fluorescence (LIF) as a fast and non-destructive method to investigate water deficit in Arabidopsis // Agr. Water Manag. 2016. V. 164. Part 1. P. 127–136.

Hazrati S., Tahmasebi-Sarvestani Z., Modarres-Sanavy S. A. M., Mokhtassi-Bidgoli A., Nicola S. Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L. // Plant Physiol. Biochem. 2016. V. 106. P. 141–148.

Kalugina O. V., Mikhailova T. A., Afanasyeva L. V., Gurina V. V., Ivanova M. V. Changes in the fatty acid composition of pine needle lipids under the aluminum smelter emissions // Ecotoxicology. 2021. V. 29. N. 4. P. 1287–1289.

Klyachko-Gurvich G. L., Pronina N. A., Ladygin V. G., Tsoglin L. N., Semenenko V. E. Uncoupled functioning of separate photosystems: 1. Characteristics of fatty acid desaturation and its role // Rus. J. Plant Physiol. 2000. V. 47. N. 5. P. 603–612 (Original Rus. Text © 2000 G. L. Klyachko-Gurvich, N. A. Pronina, V. G. Ladygin, L. N. Tsoglin, V. E. Semenenko, publ. in Fiziologiya Rasteniy. 2000. V. 47. N. 5. P. 688–698).

Korzukhin M. D., Vygodskaya N. N., Milyukova I. M., Tatarinov F. A., Tsel'niker Yu. L. Application of a coupled photosynthesis-stomatal conductance model to analysis of carbon assimilation by spruce and larch trees in the forests of Russia // Rus. J. Plant Physiol. 2004. V. 51. N. 3. P. 302–315 (Original Rus. Text © 2004 M. D. Korzukhin, N. N. Vygodskaya, I. M. Milyukova, F. A. Tatarinov, Yu. L. Tsel’niker, publ. in Fiziologiya Rasteniy. 2004. V. 51. N. 3. P. 341–354).

Lichtenthaler H. K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes // Methods in Enzymology. 1987. V. 148. P. 350–382.

Manual on methods and criteria for harmonized sampling.assessment.monitoring and analysis of the effects of air pollution on forests UNECE. ICP Forests Programme Coordinating Centre, 2010. http://www.icp-forests.org/Manual.htm/

Orekhov D. I., Yakovleva O. V., Goryachev S. N., Protopopov F. F., Alekseev A. A. The use of parameters of chlorophyll a fluorescence induction to evaluate the state of plants under anthropogenic load // Biophysics. 2015. V. 60. Iss. 2. P. 263–268.

Vernon L. P. Spectrophotometric determination of chlorophylls and pheophytins in plant extracts // Anal. Chem. 1960. V. 32. Iss. 9. P. 1144–1150.

Wintermans I. F., De Mots A. Spectrophotometric characteristics of chlorphylls a and b and their pheophytins in ethanol // Biochem. Biophys. Acta. 1965. V. 109. P. 448–453.


Return to list