Tsepordey I. S., Usoltsev V. A., Noritsin D. V. Conjugacy of Climatic Indicators in the Latitudinal Gradient of Eurasia when Modeling Biomass of Forest-Forming Species
1 Botanical Garden, Russian Academy of Siences, Ural Branch
8 Marta str., 202, Yekaterinburg, 620144 Russian Federation
2 Ural State Forest Engineering University
Sibirskiy trakt, 37, Yekaterinburg, 620100 Russian Federation
3 Analytics Competence Center of Sberbank
Gogol Str., 44, Yekaterinburg, 620026 Russian Federation
E-mail: Usoltsev50@mail.ru, norritsin@mail.ru, ivan.tsepordey@yandex.ru
Abstract
UDC 630*52:630*174.754
How to cite: Tsepordey I. S.1, Usoltsev V. A.1, 2, Noritsin D. V.3 Conjugacy of climatic indicators in the latitudinal gradient of Eurasia when modeling biomass of forest-forming species // Sibirskij Lesnoj Zurnal (Sib. J. For. Sci.). 2024. N. 1. P. 40–48 (in Russian with English abstract and references).
DOI: 10.15372/SJFS20240105
EDN: …
© Tsepordey I. S., Usoltsev V. A., Noritsin D. V., 2024
The carbon depositing capacity of forest cover in the context of climate stabilization is determined by the productivity of its biomass, which, in turn, is formed under the influence of climate. The first attempts to build maps of forest productivity by stem volume and its growth were based on integrated climate indices without the use of statistical methods. When the taxation indicators of stands and climatic factors were included in the models as independent variables, the contribution of climatic factors to the explanation of the variability of production indicators was statistically insignificant due to the regional level of the models. With the release of multifactorial modeling of biomass to the Eurasian level, the explanatory ability of both taxation and climate variables has become statistically significant. However, the stability of such models was not evaluated and the multicollinearity of the defining variables was not checked. In our study, on the basis of the author's database on the biomass of trees of forest-forming species of Eurasia and the WorldClim climate database, a conjugate analysis of monthly and average annual precipitation for the period from 1970 to 2000 was performed, the relationship of aboveground biomass of trees with their size, precipitation and temperature was revealed, and the multicollinearity of independent variables in models of biomass of forest-forming species was estimated. It has been established that multicollinearity of determining factors, including temperatures and precipitation, is not observed in the range of the main forest-forming species growing in Northern Eurasia from the subarctic to the southern temperate zones when developing climate-sensitive biomass models. But south of the 37th parallel, in the subtropical, subequatorial and equatorial zones of Eurasia, multicollinearity of temperatures and precipitation occurs when modeling the biomass of trees.
Article
СПИСОК ЛИТЕРАТУРЫ (REFERENCES)
Алисов Б. П., Полтараус Б. В. Климатология. М.: Изд-во МГУ, 1974. 300 с. [Alisov B. P., Poltaraus B. V. Klimatologiya (Climatology). Moscow: Izd-vo MGU (Moscow St. Univ. Publ.), 1974. 300 p. (in Russian)].
Базилевич Н. И., Дроздов А. В., Родин Л. Е. Продуктивность растительного покрова Земли, общие закономерности размещения и связь с факторами климата // Журн. общ. биол. 1968. Т. 29. № 3. С. 261–271 [Bazilevich N. I., Drozdov A. V., Rodin L. E. Produktivnost’ rastitel’nogo pokrova Zemli, obshchie zakonomernosti razmeshcheniya i svyaz’ s faktorami klimata (Productivity of the vegetation cover of the Earth, general patterns of placement and relation to climate factors) // Zhurn. obshch. biol. (J. Gen. Biol.). 1968. V. 29. N. 3. P. 261–271 (in Russian)].
Волобуев В. Р. О фитоклиматических закономерностях в распределении растительности на территории СССР // Бот. журн. СССР. 1947. № 5. С. 200–205 [Volobuev V. R. O fitoklimaticheskikh zakonomernostyakh v raspredelenii rastitel’nosti na territorii SSSR (On phytoclimatic patterns in the distribution of vegetation on the territory of the USSR) // Bot. zhurn. SSSR (Bot. J. USSR). 1947. N. 5. P. 200–205 (in Russian with English abstract)].
Григорьев А. А., Будыко М. И. О периодическом законе географической зональности // Докл. АН СССР. 1956. Т. 110. № 1. С. 129–132 [Grigor’ev A. A., Budyko M. I. O periodicheskom zakone geograficheskoy zonal’nosti (On the periodic law of geographical zoning) // Dokl. AN SSSR (Proc. USSR Acad. Sci.). 1956. V. 110. N. 1. P. 129–132 (in Russian with English abstract)].
Назимова Д. И. Климатическая ординация лесных экосистем как основа их классификации // Лесоведение. 1995. № 4. С. 63–73 [Nazimova D. I. Klimaticheskaya ordinatsiya lesnykh ekosistem kak osnova ikh klassifikatsii (Climatic ordination of forest ecosystems as the basis of their classification) // Lesovedenie (For. Sci.). 1995. N. 4. P. 63–73 (in Russian with English abstract)].
Репина Е. Г., Цыпин А. П., Зайчикова Н. А., Ширнаева С. Ю. Эконометрика в табличном редакторе MS Excel: практикум. Самара: Самар. гос. экон. ун-т, 2019 [Repina E. G., Tsypin A. P., Zaychikova N. A., Shirnaeva S. Yu. Ekonometrika v tablichnom redaktore MS Excel: praktikum (Econometrics in the MS Excel tabular editor: practicum). Samara: Samara St. Univ. Econ., 2019. https://rusneb.ru/catalog/000199_000009_010271621/ (in Russian)].
Рябчиков А. М. Гидротермические условия и продуктивность фитомассы в основных ландшафтных зонах // Вестн. МГУ. Сер. V. Геогр. 1968. № 5. С. 41–48 [Ryabchikov A. M. Gidrotermicheskie usloviya i produktivnost’ fitomassy v osnovnykh landshaftnykh zonakh (Hydrothermal conditions and phytomass productivity in the main landscape zones) // Vestn. MGU. Ser. 5. Geogr. (Bull. Moscow St. Univ. Ser. V. Geogr.). 1968. N. 5. P. 41–48 (in Russian with English abstract)].
Усольцев В. А. Принципы полифакториальной оценки биопродуктивности древостоев. Красноярск: Ин-т леса и древесины им. В. Н. Сукачева СО АН СССР, 1985. 48 с. [Usoltsev V. A. Printsipy polifaktorial’noy otsenki bioproduktivnosti drevostoev (Principles of multifactorial assessment of the bioproductivity of stands). Krasnoyarsk: In-t lesa i drevesiny im. V. N. Sukacheva SO AN SSSR (V. N. Sukachev Inst. For. and Timber, Sib. Br. USSR Acad. Sci., 1985. 48 p. (in Russian)].
Усольцев В. А. Фитомасса модельных деревьев для дистанционной и наземной таксации лесов Евразии. Эл. база данных. 3-е доп. изд. Моногр. Екатеринбург: Бот. сад УрО РАН; Урал. гос. лесотех. ун-т, 2023. 1 эл. опт. диск (CD-R) [Usoltsev V. A. Fitomassa model’nykh derev’ev dlya distantsionnoy i nazemnoy taksatsii lesov Evrazii. El. baza dannykh. 3-e dop. izd. Monogr. (Phytomass of model trees for remote and ground-based forest taxation in Eurasia. Electronic database. 3rd updated ed. Monograph). Yekaterinburg: Bot. Garden Ural Br. Rus. Acad. Sci.; Ural St. For. Engineer. Univ., 2023. 1 electron. opt. disk (CD-R) (in Russian)].
Черепнин В. Л. Зависимость продуктивности растительности от климатических факторов // Бот. журн. 1968. Т. 53. № 7. С. 881–890 [Cherepnin V. L. Zavisimost’ produktivnosti rastitel’nosti ot klimaticheskikh faktorov (Dependence of vegetation productivity on climatic factors) // Bot. zhurn. (Bot. J.). 1968. V. 53. N. 7. P. 881–890 (in Russian with English abstract)].
Цепордей И. С. Биологическая продуктивность лесообразующих видов в климатическом контексте Евразии. Екатеринбург: Изд-во УМЦ УПИ, 2023. 467 с. [Tsepordey I. S. Biologicheskaya produktivnost’ lesoobrazuyushchikh vidov v klimaticheskom kontekste (Biological productivity of forest-forming species in the climatic context of Eurasia. Yekaterinburg: UMTS UPI Publ., 2023. 467 p. (in Russian)].
Цепордей И. С., Усольцев В. А. Всеобщий характер действия закона Либиха-Шелфорда на биологическую продуктивность лесообразующих видов в климатических градиентах Евразии // Вестн. Поволжск. гос. технол. ун-та. Сер.: Лес. Экология. Природопользование. 2022. № 4 (56). С. 5–17 [Tsepordey I. S., Usoltsev V. A. Vseobshchiy kharakter deystviya zakona Libikha-Shelforda na biologicheskuyu produktivnost’ lesoobrazuyushchikh vidov v klimaticheskikh gradientakh Evrazii (The universal nature of the effect of the Liebig-Shelford law on the biological productivity of forest-forming species in the climatic gradients of Eurasia) // Vestn. Povolzhsk. gos. tekhnol. un-ta. Ser.: Les. Ekologiya. Prirodopol’zovanie (Bull. Volga St. Univ. Technol. Ser.: For. Ecol. Nat. Manag.). 2022. N. 4 (56). P. 5–17 (in Russian with English abstract and references)].
Цепордей И. С., Усольцев В. А., Норицин Д. В. Обоснование использования зимней температуры при прогнозировании климатически обусловленных изменений биомассы лесов Евразии // Хвойные бореальной зоны. 2023. Т. 41. № 3. С. 243–247 [Tsepordei I. S., Usoltsev V. A., Noritsin D. V. Obosnovanie ispol’zovaniya zimney temperatury pri prognozirovanii klimaticheski obuslovlennykh izmeneniy biomassy lesov Evrazii (Rationale of the winter temperature use in forecasting climate-related changes in the biomass of Eurasian forests) // Khvoynye Boreal’noy Zony (Conifers of the boreal areas). 2023. V. 41. N. 3. P. 243–247 (in Russian with English abstract and references)].
Baskerville G. L. Use of logarithmic regression in the estimation of plant biomass // Can. J. For. Res. 1972. V. 2. N. 1. P. 49–53.
Fan J. W., Wang K., Harris W., Zhong H. P., Hu Z. M., Han B., Zhang W. Y., Wang J. B. Allocation of vegetation biomass across a climate-related gradient in the grasslands of Inner Mongolia // J. Arid Environ. 2009. V. 73. Iss. 4–5. P. 521–528.
Forrester D. I., Tachauer I. H. H., Annighoefer P., Barbeito I., Pretzsch H., Ruiz-Peinado R., Stark H., Vacchiano G., Zlatanov T., Chakraborty T., Saha S., Sileshi G. W. Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate // For. Ecol. Manag. 2017. V. 396. P. 160–175.
Fu L., Lei X., Hu Z., Zeng W., Tang Sh., Marshall P., Cao L., Song X., Li Y., Liang J. Integrating regional climate change into allometric equations for estimating tree aboveground biomass of Masson pine in China // Ann. For. Sci. 2017a. V. 74. N. 42. P. 1–15.
Fu L., Sun W., Wang G. A. Climate-sensitive aboveground biomass model for three larch species in northeastern and northern China // Trees. 2017b. V. 31. Iss. 2. P. 557–573.
He X., Lei X.-D., Dong Li-Hu. How large is the difference in large-scale forest biomass estimations based on new climate-modified stand biomass models? // Ecol. Indic. 2021. V. 126. Iss. 4. Article number 107569.
Holdridge L. R. Determination of world plant formations from simple climatic data // Science. 1947. V. 105. Iss. 2727. P. 367–368.
Keith H., Mackey B. G., Lindenmayer D. B. Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests // PNAS. 2009. V. 106. Iss. 28. P. 11635–11640.
Khan D., Muneer M. A., Nisa Z.-U., Shah S., Amir M., Saeed S., Uddin S., Munir M. Z., Gao L., Huang H. Effect of сlimatic factors on stem biomass and carbon stock of Larix gmelinii and Betula platyphylla in Daxing’anling Mountain of Inner Mongolia, China // Adv. Meteorol. 2019. V. 2019. Iss. 1. Article number 5692574.
Lie Z., Xue L., Jacobs D. F. Allocation of forest biomass across broad precipitation gradients in China’s forests // Sci. Rep. 2018. V. 8. Iss. 1. Article number 10536.
Luyssaert S., Inglima I., Jung M. A., Richardson D., Reichstein M., Papale D., Piao S. L., Shulze E. D., Wingate L., Matteucci G., Aragao L., Aubinet M., Beer C., Bernhofer C., Black K. G., Bonal D., Bonnefond J. M., Chambers J., Ciais P., Cook B., Davis K. J., Dolman A. J., Gielen B., Goulden M., Grace J., Granier A., Grelle A., Griffis T., Grunwald T., Guidolotti G., Hanson P. J., Harding R., Hollinger D. Y., Hutyra L. R., Kolari P., Kruijt B., Kutsch W., Lagergren F., Laurila T., Law B. E., Le Maire G., Lindroth A., Loustau D., Malhi Y., Mateus J., Migliavacca M., Misson L., Montagnani L., Moncrieff J., Moors E., Munger J. W., Nikinmaa E., Ollinger S. V., Pita G., Rebmann C., Roupsard O., Saigusa N., Sanz M. J., Seufert G., Sierra C., Smith M. L., Tang J., Valentini R., Vesala T., Janssens I. A. CO2 balance of boreal, temperate, and tropical forests derived from a global database // Glob. Chang. Biol. 2007. V. 13. Iss. 12. P. 2509–2537.
Marcolla B., Migliavacca M., Rödenbeck C., Cescatti A. Patterns and trends of the dominant environmental controls of net biome productivity // Biogeosciences. 2020. V. 17. Iss. 8. P. 2365–2379.
Miesner T., Herzschuh U., Pestryakova L. A., Wieczorek M., Zakharov E. S., Kolmogorov A. I., Davydova P. V., Kruse S. Forest structure and individual tree inventories of north-eastern Siberia along climatic gradients // Earth Syst. Sci. Data. 2022. V. 14. N. 12. P. 5695–5716.
Pardé J. Dendrométrie. Gap, Louis-Jean, 1961. 147 p.
Paterson S. S. The forest area of the world and its potential productivity. The Royal Univ. Goeteborg, Sweden, 1956. 216 p.
Reich P. B., Luo Y. J., Bradford J. B., Poorter H., Perry C. H., Oleksyn J. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots // PNAS. 2014. V. 111. N. 38. P. 13721–13726.
Statsmodels, 2023. stats.outliers_influence.variance_inflation_factor.html
Stegen J. C., Swenson N. G., Enquist B. J., White E. P., Phillips O. L., Jorgensen P. M., Weiser M. D., Mendoza A. M., Vargas P. N. Variation in above-ground forest biomass across broad climatic gradients // Glob. Ecol. Biogeogr. 2011. V. 20. N. 5. P. 744–754.
Weck J. Forstliche Zuwachs- und Ertragskunde. Radebeul und Berlin: Neumann Verlag, 1955. 160 p.
Wilschut R. A., DeLong J. R., Geisen S. S., Hannula E., Quist C. W., Snoek B., Steinauer K., Wubs E. R. J., Yang Q., Thakur M. P. Combined effects of warming and drought on plant biomass depend on plant woodiness and community type: a meta-analysis // Proc. R. Soc. B. 2022. V. 289. Iss. 1984. Article number 2022.1178.
WorldClim версии 2.1 за 1970-2000 годы, 2021. https://worldclim.org/data/index.html
Zeller L., Liang J., Pretzsch H. Tree species richness enhances stand productivity while stand structure can have opposite effects, based on forest inventory data from Germany and the United States of America // For. Ecosyst. 2018. V. 5. Iss. 1. Article number 4.
Zeng W. S., Duo H. R., Lei X. D., Chen X. Y., Wang X. J., Pu Y., Zou W. T. Individual tree biomass equations and growth models sensitive to climate variables for Larix spp. in China // Eur. J. For. Res. 2017. V. 136. N. 2. P. 233–249.
Zeng W., Chen X., Yang X. Developing national and regional individual tree biomass models and analyzing impact of climatic factors on biomass estimation for poplar plantations in China // Trees. 2021. V. 35. Iss. 4. P. 93–102.