RU EN

Page menu:

Bukhanov E. R., Shefer A. D., Shabanov A. V., Gurevich Yu. L., Krakhalev M. N. The Structure, Optical and Spectral Characteristics of Epicuticular Wax of Blue Spruce Needles

Keywords:
photonic crystal, electron microscopy, optical microscopy, fluorescence spectroscopy, numerical modeling of one-dimensional photonic crystals, Picea pungens Engelm.

Abstract

UDC: 535.3

How to cite: Bukhanov E. R.1, 2, Shefer A. D.2, Shabanov A. V.1, Gurevich Yu. L.2, Krakhalev M. N.1 The structure, optical and spectral characteristics of epicuticular wax of blue spruce needles // Sibirskij Lesnoj Zurnal (Sib. J. For. Sci.). 2024. N. 1. P. … (in Russian with English abstract and references).

DOI: 10.15372/SJFS20240111

EDN: …

© Bukhanov E. R., Shefer A. D., Shabanov A. V., Gurevich Yu. L., Krakhalev M. N., 2024

A method for separating clean plates of epicuticular wax has been proposed. The use of water, which can penetrate deeply into wax structures under the influence of van der Waals forces and expand upon freezing, allows to quickly obtain uncontaminated wax plates with a native structure without any third-party chemical impurities. Using scanning electron microscopy, images of blue spruce (Picea pungens Engelm.) needle wax were obtained. Its morphological and structural characteristics have been determined. A distinctive feature is the presence of wax nanotubules with a characteristic diameter of ~150 nm and a length of 3–5 μm. Nanotubes lie on top of each other in stacks, forming a one-dimensional long-period lattice. Microscopic observations of the wax were made in reflected and transmitted light. It has been shown that the coating of blue spruce needles consists of microparticles of wax with a structural color. In a wide spectral range, individual particles change color from blue to red, as a result, large conglomerates of particles are white. Fluorescence spectra of needles with native wax cover and the same needles after wax removal were obtained. When comparing the width of fluorescence lines at half-height of blue spruce needles with and without wax, the influence of the wax layer on the lifetime of excited electrons in photosystem II was revealed, thereby establishing a connection between the wax cover and the process of photosynthesis. Using the matrix transfer method, transmission spectra were calculated for a lattice similar to a waxy structure, a chloroplast, and a combination of a waxy structure with a chloroplast. In the latter version, the long-wave zone of selective reflection is much wider than in individual cases. When examining a structure containing a chloroplast and epicuticular wax, there is a slight splitting of the stop zone, as if there were a defect, which contributes to a high concentration of energy at the site of splitting. Due to an increase in energy concentration, the density of photonic states at the corresponding wavelengths increases. This effect is important for photosynthesis because, according to Fermi's golden rule, the rate of reaction is proportional to the density of photonic states. The calculation results are in good agreement with the experimental spectra.

Article


СПИСОК ЛИТЕРАТУРЫ (REFERENCES)

Буханов Е. Р., Коршунов М. А., Шабанов А. В. Оптические процессы в фотосинтезе // Сиб. лесн. журн. 2018. № 5. С. 19–32 [Bukhanov E. R., Korshunov M. A., Shabanov A. V. Opticheskie protsessy v fotosinteze (Optical processes in photosynthesis) // Sib. lesn. zhurn. (Sib. J. For. Sci.). 2018. N. 5. P. 19–32 (in Russian with English abstract)].

Буханов Е. Р., Шабанов А. В., Крахалев М. Н., Волочаев М. Н., Гуревич Ю. Л. Влияние строения на оптические свойства эпитикулярного воска голубой ели (Picea pungens) // Уч. зап. физ. ф-та Моск. ун-та. 2019. № 5. Статья 1950502. 7 с. [Bukhanov E. R., Shabanov A. V., Krakhalev M. N., Volochaev M. N., Gurevich Y. L. Vliyanie stroeniya na opticheskie svoystva epitikulyarnogo voska goluboy eli (Picea pungens) (The effect of the structure on the optical properties of epicuticular wax of blue spruce (Picea pungens)) // Uch. zap. fiz. f-ta Mosk. un-ta (Sci. Notes Fac. Phys. Moscow Univ.). 2019. N. 5. Article 1950502. 7 p. (in Russian with English abstract)].

Буханов Е. Р., Волочаев М. Н., Пятина С. А. Фотоника хлоропластов растений // Изв. РАН. Сер. физ. 2023. Т. 87. № 10. С. 1458–1462 [Bukhanov E. R., Volochaev M. N., Pyatina S. A. (Photonics of plant chloroplasts) // Izv. RAN. Ser. Fiz. (Bull. Rus. Acad. Sci.: Phys.). 2023. V. 87. N. 10. P. 1458–1462 (in Russian with English abstract)].

Ветров С. Я., Тимофеев И. В., Шабанов В. Ф. Локализованные моды в хиральных фотонных структурах // Усп. физ. наук. 2020. Т. 190. № 1. С. 37–62 [Vetrov S. Ya., Timofeev I. V., Shabanov V. F. (Localized modes in chiral photonic structures) // Usp. fiz. nauk (Adv. Phys. Sci.). 2020. V. 190. N. 1. P. 37–62 (in Russian with English abstract)].

Коршунов М. А., Шабанов А. В., Буханов Е. Р., Шабанов В. Ф. Влияние длиннопериодической упорядоченности в структуре растений на первичные стадии фотосинтеза // ДАН. 2018. Т. 478. № 3. С. 280–283 [Korshunov M. A., Shabanov A. V., Bukhanov E. R., Shabanov V. F. (Effect of long-period ordering of the structure of a plant on the initial stages of photosynthesis) // DAN (Proc. Acad. Sci.). 2018. V. 478. N. 3. P. 280–283 (in Russian with English abstract)].

Шабанов А. В., Коршунов М. А., Буханов Е. Р. Исследование электромагнитного поля в одномерных фотонных кристаллах с дефектами // Комп. опт. 2017. Т. 41. № 5. С. 680–686 [Shabanov A. V., Korshunov M. A., Bukhanov E. R. (Investigation of the electromagnetic field in one-dimensional photonic crystals with defects) // Komp. Opt. (Comp. Optics). 2017. V. 41. N. 5. P. 680–686 (in Russian with English abstract)].

Barthlott W. Scanning electron microscopy of the epidermal surface in plants In: Scanning electron microscopy in taxonomy and functional morphology / D. Claugher (Ed.). New York: Oxford Univ. Press, 1990. P. 69–94.

Barthlott W., Neinhuis C., Cutler D., Ditsch F., Meusel I., Theisen I., Wilhelmi H. Classification and terminology of plant epicuticular waxes // Bot. J. Linnean Soc. 1998. V. 126. Iss. 3. P. 237–260.

Bi H., Kovalchuk N., Langridge P., Tricker P. J., Lopato S., Borisjuk N. The impact of drought on wheat leaf cuticle properties // BMC Plant Biol. 2017. V. 17. N. 1. Article number: 85. 13 p.

Bianchi G. Plant waxes In: Waxes: chemistry, molecular biology and functions / R. J. Hamilton (Ed.). Dundee, Scotland: Oily Press, 1995. P. 175–222.

Bukhanov E. R., Volochaev M. N., Pyatina S. A. Photonics of plant chloroplasts // Bull. Rus. Acad. Sci.: Phys. 2023. V. 87. N. 10. P. 1488–1492 (Original Rus. text © E. R. Bukhanov, M. N. Volochaev, S. A. Pyatina, 2023, publ. in Izv. RAN. Ser. Fiz. 2023. V. 87. N. 10. P. 1458–1462).

Dora S. K. Real time recrystallization study of 1, 2 dodecanediol on highly oriented pyrolytic graphite (HOPG) by tapping mode atomic force microscopy // World J. Nano Sci. Engineer. 2017. V. 7. N. 1. P. 1–15.

Dora S. K., Wandelt K. Recrystallization of tubules from natural lotus (Nelumbo nucifera) wax on a Au (111) surface // Beilstein J. Nanotechnol. 2011. V. 2. Iss. 1. P. 261–267.

Dora S. K., Koch K., Barthlott W., Wandelt K. Kinetics of solvent supported tubule formation of Lotus (Nelumbo nucifera) wax on highly oriented pyrolytic graphite (HOPG) investigated by atomic force microscopy // Beilstein J. Nanotechnol. 2018. V. 9. Iss. 1. P. 468–481.

Dragota S., Riederer M. Comparative study on epicuticular leaf waxes of Araucaria araucana, Agathis robusta and Wollemia nobilis (Araucariaceae) // Austral. J. Bot. 2008. V. 56. Iss. 8. P. 644–650.

Ensikat H. J., Neinhuis C., Barthlott W. Direct access to plant epicuticular wax crystals by a new mechanical isolation method // Int. J. Plant Sci. 2000. V. 161. N. 1. P. 143–148.

Ensikat H. J., Boese M., Mader W., Barthlott W., Koch K. Crystallinity of plant epicuticular waxes: electron and X-ray diffraction studies // Chem. Phys. Lipids. 2006. V. 144. Iss. 1. P. 45–59.

Grant R. H., Heisler G. M., Gao W., Jenks M. Ultraviolet leaf reflectance of common urban trees and the prediction of reflectance from leaf surface characteristics // Agr. For. Meteorol. 2003. V. 120. Iss. 1–4. P. 127–139.

Guo J., Xu W., Yu X., Shen H., Li H., Cheng D., Liu A., Liu J., Liu C., Zhao S., Song J. Cuticular wax accumulation is associated with drought tolerance in wheat near-isogenic lines // Front. Plant Sci. 2016. V. 7. Article 01809. 10 p.

Harrington C. A., Carlson W. C. Morphology and accumulation of epicuticular wax on needles of Douglas-fir (Pseudotsuga menziesii var. menziesii) // Northwest Sci. 2016. V. 89. Iss. 4. P. 401–408.

Holmes M. G., Keiller D. R. Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: a comparison of a range of species // Plant, Cell Environ. 2002. V. 25. Iss. 1. P. 85–93.

Koch K., Barthlott W., Koch S., Hommes A., Wandelt K., Mamdouh W., De-Feyter S., Broekmann P. Structural analysis of wheat wax (Triticum aestivum, c. v. ‘Naturastar’ L.): from the molecular level to three dimensional crystals // Planta. 2006a. V. 223. Iss. 2. P. 258–270.

Koch K. A., Dommisse A., Barthlott W. Chemistry and crystal growth of plant wax tubules of lotus (Nelumbo nucifera) and nasturtium (Tropaeolum majus) leaves on technical substrates // Crystal Growth & Design. 2006b. V. 6. N. 11. P. 2571–2578.

Korshunov M. A., Shabanov A. V., Bukhanov E. R., Shabanov V. F. Effect of long-period ordering of the structure of a plant on the initial stages of photosynthesis // Dokl. Phys. 2018. V. 63. P. 1–4 (Original Rus. Text © M. A. Korshunov, A. V. Shabanov, E. R. Bukhanov, V. F. Shabanov, 2018, publ. in Dokl. Akad. Nauk. 2018. V. 478. N. 3. P. 280–283).

Kunst L., Samuels A. S. Biosynthesis and secretion of plant cuticular wax // Progr. Lipid Res. 2003. V. 42. Iss. 1. P. 51–80.

Lee D. Nature’s palette: The science of plant color. Chicago: Univ. Chicago Press, 2010. 432 p.

Poinern G. E. J., Le X. T., Fawcett D. Superhydrophobic nature of nanostructures on an indigenous Australian eucalyptus plant and its potential application // Nanotechnol., Sci. Appl. 2011. V. 4. Iss. 1. P. 113–121.

Reicosky D. A., Hanover J. M. Physiological effects of surface waxes: I. Light reflectance for glaucous and nonglaucous Picea pungens // Plant Physiol. 1978. V. 62. Iss. 1. P. 101–104.

Thomas K. R., Kolle M., Whitney H. M., Glover B. J., Steiner U. Function of blue iridescence in tropical understorey plants // J. Royal Soc. Interface. 2010. V. 7. Iss. 53. P. 1699–1707.

Vetrov S. Ya., Timofeev I. V., Shabanov V. F. Localized modes in chiral photonic structures // Physics-Uspekhi. 2020. V. 63. N. 1. P. 33–56 (Original Rus. text © S. Ya. Vetrov, I. V. Timofeev, V. F. Shabanov, 2020, publ. in Usp. Fiz. Nauk, Rus. Acad. Sci. 2020. V. 190. N. 1. P. 37–62).

Vignolini S., Moyroud E., Glover B. J., Steiner U. Analysing photonic structures in plants // J. Royal Soc. Interface. 2013. V. 10. Iss. 87. P. 1–9.

Walton T. J. Waxes, cutin and suberin In: Methods in plant biochemistry. V. 4: Lipids, membranes and aspects of photobiology / J. L. Harwood and J. Boyer (Eds.). San Diego, CA: Acad. Press, 1990. P. 105–158.

Weaver J. M., Lohrey G., Tomasi P., Dyer J. M., Jenks M. A., Feldmann K. A. Cuticular wax variants in a population of switchgrass (Panicum virgatum L.) // Industr. Crops and Products. 2018. V. 117. P. 310–316.


Return to list